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1 Introduction to Soliton Theory

1.1 Nonlinearity, dispersion and dissipation. Wave phenomena are abundant in Physics. They
could be described first as waves on strings or perhaps on water surfaces or on stretched membranes.
They also could be related to the propagation of sound and electromagnetic radiation. In all these areas
it’s common practise to develop wave propagation concepts from the well known d’Alembert equation

�u(x, t) = 0, � := 1
c2 ∂

2
t − ∂2

x − ∂2
y − ∂2

z , (1.1)

where u : R3×1 → R describes the wave profile, whilst c ∈ R+
0 (e.g., c is the speed of light in vacuum for

e.m. waves). Notice that (1.1) is linear. In this introductory part we’ll work in (1 + 1)–dimension: we
restrict to equation (∂2

t − c2∂2
x)u(x, t) = 0, whose general solution (expressed in variables x± ct) is

u(x, t) = f(x− ct) + g(x+ ct), (1.2)

being f, g (not necessary differentiable) functions, determined once initial conditions u(x, 0), ut(x, 0) are
assigned. Solution (1.2) describe two distinct waves moving in opposite directions with the same velocity
c; those waves do not interact and can be overlapped in light of the principle of linear superposition.
What follows is that these waves don’t change their shape during the propagation1.

Consider now unidirectional propagating waves and introduce the partial differential equation (PDE)

ut + cux = 0, (1.3)

having invoked short–hand notation for partial derivatives and chosen c = 1, for simplicity. Equation
(1.3) is an example of evolution equation, in light of the following

Definition 1.1 - An evolution equation is a PDE for an unknown function u = u(x, t) of the form

ut = D(u, ux, uxx, . . . ), (1.4)

being D involves only u and its space derivatives. If D is nonlinear then equation (1.4) is called a
nonlinear evolution equation, hereafter abbreviated as NLEE.

To avoid technical arguments we’ll assume solutions of (1.4) to decay sufficiently rapidly, i.e. that
u(x, t) ∈ C∞(R) and uxk → 0 for |x| → ∞, ∀ k ∈ N0 (actually k = 3 will suffice).

Let’s now discuss some important examples of evolution equation. First, consider the following one

ut + ux + uxxx = 0, (1.5)

which represents a dispersive wave equation. To show up this property, impose harmonic wave–type
solutions of (1.5), i.e. that u(x, t) = eı(kx−ωt); the latter solves (1.5) if and only if (iff)

ω(k) = k(1− k2), k ∈ R, (1.6)

where k ∈ R lets u(x, t) to oscillate at t = 0. Thus u describes a wave propagating with phase velocity

vf :=
ω(k)

k
= 1− k2 (k ∈ R), (1.7)

which means that waves with different wave number (equivalently, wave length λ = 2π/k) propagate
with different velocities. This is the fundamental property of dispersive waves. Notice that the idea can
be extended, by integration, to how many components you desire; in fact

u(x, t) =

ˆ +∞

−∞
A(k)ei[kx−ω(k)t] d k, (1.8)

1Take the f component of (1.2) and choose the new coordinate ξ = x− ct: then f = f(ξ) doesn’t change form during
propagation, for every fixed ξ; thus f(x, t) has the same shape of f(x, 0), ∀ t ∈ R+.
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being A(k) the Fourier transform of u(x, 0).
Till now we have tacitly assumed the dispersion function ω = ω(k) to be a real valued function

for k ∈ R. This is true as far as odd derivatives are added to equation (1.5); the picture changes
dramatically if we add even derivatives. Let’s try, for example, the following PDE

ut + ux − uxx = 0. (1.9)

Again, after imposing harmonic solutions of (1.9), we get the expression

ω(k) = k(1− ik) =⇒ u(x, t) = e−k
2teik(x−t). (1.10)

In this case vf (k) = 1 ∀ k ∈ R+ and u = u(x, t) describes a wave whose profile is damped by the factor
e−k

2t as t increases. The exponential decay exhibited in (1.10) is usually called dissipation2.
Finally, let’s discuss a key concept in wave propagation, namely nonlinearity. For this purpose,

consider the NLEE
ut + (1 + u)ux = 0. (1.11)

A comparison of the latter with equation (1.3) suggests that the nonlinearity uux could be obtained by
replacing c with (1 + u) in the solution. Actually, after solving equation (1.11) (e.g., with the method of
characteristics), the suggested substitution holds true and the general solution is [DrJ993]

u(x, t) = f
[
x− (1 + u)t

]
, (1.12)

where f is ad arbitrary function. The problem is then to solve equation (1.12) for u once the initial wave
profile u(x, 0) is assigned. This may be a difficult task since solution of equation (1.12) (with f > 0 for
some x ∈ R) is a single–valued function for a finite time. In fact, it exists a time at which the solution
exhibits non–uniqueness as a wave which has ""broken” (see Figure 1). To fix this problem one usually
insert a discontinuity in the solution, simulating a shock.

Figure 1: Temporal evolution of a nonlinear wave profile. (a) t = t1; (b) t = t2 > t1; (c) t = t3 > t2. The wave
becomes vertical at t = t2 and thereafter the solution is three–valued in a region [DrJ993].

Another complication is that the principle of linear superposition doesn’t generally hold true for
nonlinear equations3. However, we’ll see that a related principle can be formulated for certain NLEE.

Of course one can imagine to combine nonlinearity with dissipative and/or dispersive wave properties.
So, for example, we might derive NLEE like the following ones:

ut + (1− u)ux + uxxx = 0 or ut + (1− u)ux − uxx = 0.

The first one is known as Kortweg–de Vries equation4 (hereafter abbreviated as KdV equation) and
embodies dispersion, whilst the second one, known as Burgers equation, has dissipative properties. Our
main concern will be with the method of solution (and the properties of) the KdV equation and other
related ""exactly integrable” equations, briefly discussed in the next section.

2Notice that a linear combination of odd and even derivatives could describes both dispersive and dissipative waves.
3Verify that, given solutions u1 = u1(x, t), u2 = u2(x, t) of (1.11), then u ≡ u1 + u2 doesn’t solve equation (1.11).
4To simplify notation, we’ll drop from now on the saxon genitive in writing equations’ names.
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1.2 Some NLEE in (1+1), (2+1)–dimensions. We start with evolution equation in (1+1)–dimensions.

• Burgers Equation
ut + (1 + u)ux − νuxx = 0, ν ∈ R+

0 . (1.13)

Equation (1.13) is a dissipative NLEE deduced in 1906 by J. M. Burgers (1895–1981). It is widely
used in Physics, e.g., to describe gas dynamics and traffic flux. The parameter ν ∈ R+

0 is related to the
viscosity of the fluid of interest (case ν = 0 is called inviscid Burgers equation). Equation (1.13) can be
written in a more common form: using the transformation αφ 7→ 1 + u, α ∈ R \ {0}, we get

φt + αφφx − νφxx = 0. (1.14)

When solving the nonlinear initial value problem, equation (1.14) can be linearized by choosing

φ ≡ −2 ν
ϕx
ϕ
, (1.15)

known as Hopf–Cole transformation. Applying (1.15), one recovers the heat equation:

φt + φφx = νφxx =⇒ ϕx
ϕ

(ϕt − νϕxx) = (ϕt − νϕxx)x ,

α = 1 for simplicity. Then if ϕ = ϕ(x, t) solves the heat equation, φ = φ(x, t) solves Burgers one.

• Korteweg–de Vries equation (KdV)

ut + (1 + u)ux + uxxx = 0
αφ 7→1+u, α∈R\{0}−−−−−−−−−−−−−→ φt + αφφx + φxxx = 0. (1.16)

Equation (1.16) was introduced in 1895 by D. J. Korteweg (1848–1941) and G. de Vries (1866–
1934) to describe the phenomenon observed by Lord S. Russell in 1834. The KdV equation has
many physical applications: for example, in can be used to describe the propagation of unidirectional
waves in shallow waters, as the continuum limit of anharmonic non–linear lattices, for ion–acoustic and
magnetohydrodynamic waves in cold plasma [New985]. The KdV equation is a dispersive NLEE; also (as
we’ll see soon) it is Galilei–invariant, it admits infinite non–trivial constants of motion and has soliton
solutions, as N. J. Zabusky (1929) and M. D. Kruskal (1925–2006) discovered in 1965 [ZaK965].
For now, let’s point out the following property about uniqueness of KdV solutions [Kar998]

Lemma 2.1 - KdV solutions that decay sufficiently rapid are uniquely determined by initial data.

Proof. Let u, v be two different KdV solutions belonging to the same initial condition; let then be
w = u− v. Substituting in (1.16) one finds wt +α(uwx +wvx) +wxxx = 0. Multiplying both size of the
latter by w, integrating by parts and using the fact that w is a rapidly decreasing function, we obtain

1

2

d

d t

ˆ
R
w2 dx+ α

ˆ
R

(
vx − 1

2ux

)
w2 dx = 0.

Calling E(t) ≡ 1
2

´
R w

2 dx and M ≡ sup |α(vx − ux
2 )| < ∞ we get E(t) ≤ E(0)e−αMt. Since E(0) =

1
2

´
R ω

2(0, t) dx = 0 we have E(t) = 0 and then w = 0, so u(x, t) = v(x, t) ∀ t ∈ R+
0 . �

There are many variants of the KdV equation; among others we point out the following one

φt − αφ2φx + φxxx = 0, (1.17)

known as modified KdV (mKdV). In particular, equation (1.17) is called focusing (defocusin) mKdV
if α > 0 (α < 0). In §2.1 we’ll see that mKdV and KdV are related: in fact, it will be shown that if
φ is a solution of mKdV with α = 6, then (and only then) ψ ≡ φx+φ2 is a solution of KdV (with α = 6).
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• Sine–Gordon equation (SG)

φtt − φxx + sinφ = 0
u 7→ 1

2 (x+t), v 7→ 1
2 (x−t)

−−−−−−−−−−−−−−−→ φuv = sinφ. (1.18)

Equation (1.18) is an example of a hyperbolic5 NLEE, whose name comes from the Klein–Gordon (KG)
equation (� + µ2)ψ = 0. Notice that equations in (1.18) are equivalent: the first one is expressed in
spacetime coordinates (x, t), whilst the second one in light–cone coordinates (u, v). The latter is the
original form derived, independently, by L. Bianchi (1856–1928) and A. V. Bäcklund (1845–1922)
when studying auto–transformations of pseudospherical surfaces (i.e., surfaces with negative curvature
constant); their works conduct to the introduction of the so called Bäcklund (auto)–transformations,
whose details will be discussed later (see §4). The SG equation admits soliton solutions.

Among many generalizations of the SG equation, we mention the shine–Gordon equation (ShG)

φtt − φxx + sinhφ = 0, (1.19)

which shares all properties satisfied by SG with the exception of the existence of soliton solutions.

• Boussinesq equation
φxx − φtt + 6

(
φ2
)
xx

+ φx4 = 0. (1.20)

This dispersive NLEE was introduced by J. V. Boussinesq (1842–1929) in 1872 in response to Russell’s
observations [Bou871]. His basic idea was to eliminate the vertical component of the velocity flux 6,
studying only the planar propagation. This is known as Boussinesq approximation and it can be applied
to the flux with performing a Taylor expansion of the velocity potential ϕ = ϕ(x, z; t) around, e.g., the
bed level z = −h, being h the mean water depth. For an incompressible, conservative flux, one has

ϕ = ϕf − 1
2 (z + h)2

(
ϕf
)
xx

+ 1
24 (z + h)4

(
ϕf
)
x4 + . . . , (1.21)

where ϕb(x; t) ≡ ϕ(x,−h; t). Then the expansion is truncated to a finite number of terms. Taking into
account the boundary conditions of the wave profile at the free surface elevation z = η(x, t){

ηt + uηx − w = 0,

ϕt + 1
2

(
u2 + w2

)
+ gη = 0,

u ≡ ϕx, w ≡ ϕz,

and applying approximation (1.21), we gets finally the coupled Boussinesq equations{
ηt +

[
(h+ η)ub

]
x

= h3

6

(
ub
)
xxx

,(
ub
)
t

+ ub
(
ub
)
x

+ gηx = h2

2

(
ub
)
xxt
,

(1.22)

having defined with ub the horizontal component of the velocity flux at the bed. Equations (1.22) holds
iff h is a constant independent of position x; they also reduce to the so called shallow water equations
with the additional assumption (ub)xxx = 0 = (ub)xxt. Other approximations allow to reduce equations
(1.22) in a single NLEE (conveniently normalized), formally equivalent to expression (1.20).

Many wave phenomena are well described by the Boussinesq equation. Furthermore, under suit-
able assumptions, equation (1.20) reduces to KdV for waves on the line, to the Kadomtsev–Petviashvili
equation (1.25) for planar waves and to the nonlinear Schrödinger equation (1.23) for narrowband waves.

5Second order PDEs have form Aψxx+2Bψxy+Cψyy+Dψx+Eψy+F = 0 and can be classified like conics: assuming
ψ ∈ C2(R), if B2−AC Q 0 equations are called elliptic (level off noises, e.g. Laplace equation), parabolic (maintain noises,
without magnifying them, e.g. heat equation) and hyperbolic (amplify noises, e.g. d’Alembert equation).

6We remind that fluid properties can be specified by flux velocity’s ones: defining with J : Ω ⊆ R3 → R3 (Ω an open
set) the flux vector field, we’ll say the fluid is stationary iff J t = 0, incompressible iff ∇ ·J = 0 (i.e. iff J is solenoidal)
and irrotational iff ∇∧J = 0. Notice that if J is irrotational and Ω is simply connected, then J is conservative and can
be written as gradient of a given velocity potential ϕ : A ⊆ R3 → R, whilst if J = ∇ϕ, then J is irrotational.
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• Nonlinear Schrödinger equation (NLS)

ψxx + iψt + α |ψ|2 φ = 0. (1.23)

Unlike linear Schrödinger equation, the NLS never describes the evolution of a quantum state. As we
shall see, the NLS is completely integrable [ZaM974] and can be solved by means of the Inverse Scattering
(or Spectral) Transform (IST), which allows to transform equation (1.23) into a set of linear equations
known as Zakharov–Shabat system (ZS); from this property we’ll show that NLS has soliton solutions.
The NLS is also Galilei–invariant, i.e. if φ = φ(x, t) solves (1.23), also φ[v](x, t) ≡ φ(x−vt, t)e− iv2 (2x+vt)

does. The NLS has many physical applications: in Nonlinear Optics, for example, it models many non-
linear effects (due to the propagation of light pulses) in fiber optics like self–trapping, auto–modulations
of monochromatic waves or stimulated–Raman dispersion; it describes the propagation of Langevin
waves in plasma, of heat pulses in solids and it thought to be a good model for explaining the formation
of killer waves. Also it’s gauge equivalent to the so called isotropic Landau–Lifšitz equation (also known
as Heisenberg ferromagnet equation) St = S ∧ Sxx, where S is the spin vector operator.

Notice that expression (1.23) for NLS is not unique in literature. There exist different forms for
NLS, each one ascribable to a perturbation of the free particle linear Schrödinger equation. A general
class of such equations, known as derivative–NLS (d–NLS) is of the form (in (3 + 1)–dimensions)

iψt +∇2ψ = f
(
ψ,ψ∗, ψx,y,z, ψ

∗
x,y,z

)
, (1.24)

where f is an analytic function of ψ, its spatial derivatives ψx,y,z and their complex conjugates. Ex-
pression (1.23) has a relevant role among equations (1.24): in fact, we’ll see that it is possible to put a
generic dispersive NLEE in NLS form under (an appropriate choice of) a multiple scale limit7.

We close this section with a brief discussion about two important NLEE in (2 + 1)–dim.

• Kadomtsev–Petviashvili equation (KP)

(φt + 6φφx + φxxx)x + 3σ2φyy = 0, σ = (ı,−1). (1.25)

These two equations where originally written in 1970 by B. B. Kadomtsev (1928–1998) and V. Petvi-
ashvili (1936–1993) with the aim of describing ion–acoustic wave propagation in plasma in presence of
strong, transversal perturbations. Equations (1.25) generalize KdV in two spatial dimensions, the latter
being recovered for no transversal dynamics, i.e. if φyy = 0. It’s common choice to distinguish equations
(1.25) in KPI for σ = ı and KPII for σ = 1. KP equations represent (universal) completely integrable
bidimensional systems (they can be solved with IST), meaning that many bidimensional integrable sys-
tems can be obtained as particular cases of KP; they also admit n–soliton solutions. Next figure shows
a 2–solitons interaction from KPII (left) and a picture of sea waves interaction taken in Oregon (right).

7Although we don’t have a general theorem, till now there are no counterexamples to this "universal" property.
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Furthermore KP equations has periodic solutions such as cnoidal waves8, i.e. periodic unidimensional
stable solutions (see Figure 2), or hexagonal waves solutions, which correspond to biphasic solutions
characterized by an hexagonal periodic cell structure (see Figure 3).

Figure 2: KP cnoidal wave solution (top left), cnoidal waves in shallow waters near the Panama coast (top
right); cloudy cnoidal waves over Atlantic (bottom left) and Indian (bottom right) Ocean.

Figure 3: KP biphasic solution (left), interaction of two wave trains with the walls of an harbor model (right).

8The term ""cnoidal” originates from the symbol ""cn” of a special class of elliptic functions introduced by C. G. J.
Jacobi (1804–1851) in 1829. These functions can be defined by means of their Lambert series expansion as [AbS972]

cn(x) =
2π

K
√
m

∞∑
n=1

qn+1/2

1 + q2n+1
cos
[ πx

2K
(2n+ 1)

]
, q := e−

πK′
K , K(m) :=

ˆ π/2

0

d θ√
1−m sin2 θ

, ıK′(m) := ıK(1−m),

wherem is a parameter, whilst q,K,K′ are special functions known as nome, quarter real period, quarter imaginary period.
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• Davey–Stewartson equation (DS){
ıut + 1

2

(
σ2uxx + uyy

)
+ α |u|2 u− ρφu = 0,

φxx − σ2φyy = 2α
(
|u|2

)
xx

= 0,
σ = (1, ı), α = (1,−1), ρ ∈ R. (1.26)

Introduced by D. J. Benney and G. J. Roskes in 1969 to describe the propagation of tridimensional
water waves with finite depth [BeR969], re–derived and written in the form (1.26) by A. Davey and
K. Stewartson in 1974 [DeS974], DS equations are a system of coupled NLEE for a complex field
u = u(x, y; t) (wave profile) and a real field φ = φ(x, y; t) (mean–flow). As for the KP equations, DS
equations are called DSI for σ = 1 and DSII for σ = ı; furthermore the parameter α distinguishes
DS(I,II) in focusing (or attractive) for α = 1 and de–focusing (or repulsive) for α = −1. The parameter
ρ in (1.26) is defined by the field of application of DS: ρ < 0 in optics, whereas ρ > 0 for water waves.
Notice that the system is decoupled when ρ = 0 and can be reduced to the classical NLS equation.

Interestingly, DSI and DSII equations integrable by IST [AbC991] and (as the NLS equation) have
universal character. Notice also that DS(I,II) equations admit four types of soliton solutions: linear
solutions, characterized by a unidimensional structure, algebraic, periodic and reticular solutions, charac-
terized instead by a bidimensional localized structure, i.e. exponentially decreasing in all directions. The
existence of such solutions, i.e. of localized multi–dimensional solitons (also known as dromions), was
proved for the first time in 1988 by the group Boiti–Léon–Martina–Pempinelli [BLMP88, BMP993],
using DS as mathematical model. This result open the way to new applications in Nonlinear Physics,
showing that solitons are not just a unidimensional phenomenon.

1.3 The discovery of solitary waves. In previous sections some important NLEEs were introduced.
Here we’ll give a brief historical introduction to the KdV equation and its solitary wave solution. First
let’s describe some empirical properties of solitary waves, as they were collected by Russell in reproducing
the observed phenomenon in the laboratory [DrJ993]. With simple instruments, he deduced the following
key properties: i) solitary waves are stable and can travel over very long distances (normal ones tend
to flatten out); ii) they never merge after a superposition and re–emerge with the same shape, but
translated along the spatial coordinate9; iii) with reference to Figure 4, if the amplitude a of the wave
is greater than undisturbed water depth h, then it splits in two waves with amplitudes a1, a2 (with
a1 6= a2) s.t. a = a1 + a2; iv) the speed c of the wave depends on a and h through the relation

c2 = g(h+ a), (1.27)

being g the gravity acceleration. Thus solitary waves are gravity waves and higher waves travel faster.

Figure 4: Parametrization of a solitary wave (left) and real model experiment (right).

To put formula (1.27) on a firmer footing, both Boussinesq (1871) and Lord Rayleigh (1876) started
from the equations for an inviscid, incompressible fluid and, assuming a solitary wave to have length
scale much greater than water depth (i.e., a� h), they showed that the wave profile z = ζ(x; t) is

ζ(x, t) = a sech2
[
β(x− ct)

]
, β2 ≡ 3a

4h2(h+ a)
, ∀a > 0. (1.28)

9In other words, they don’t re–emerge in the same position as they will do if they moved at constant velocity.
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However they didn’t find an equation for z = ζ(x, t) having (1.28) as solution. This step was completed
in 1895 by Kortweg and de Vries: they proved that the wave profile satisfies the NLEE [DrJ993]

ζt =
3

2

( g
h

) 1
2

(
2

3
εζχ + ζζχ +

σ

3
ζχχχ

)
, χ ≡ x− (gh)

1
2

(
1− ε

h

)
t, σ ≡ h3

3
− Th

gρ
, (1.29)

where ε is arbitrary, σ incorporates the surface tension T of a fluid with density ρ and χ is a coordinate
chosen to be moving (almost) with the wave. Notice that |ε|, |σ| � 1. Using then the new variable x ≡
χ+ ε (g/h)

1/2
t, equation (1.29) gets the usual KdV–form ζt = γζζx + δζxxx , where γ ≡ 3

2

(
g
h

) 1
2 , δ ≡ γσ

3 .
Let’s now verify that expression (1.28) is a solitary wave solution of the KdV equation. To do this,

suppose that the solution of (1.29) is stationary in the χ–frame, then ζ = ζ(χ) and so
2ε
3 ζχ + ζζχ + σ

3 ζχχχ = 0, (1.30)

which is an ordinary differential equation (ODE) in χ10. Direct integration of equation (1.30) gets
σ
3 ηχχ + 1

2ζ
2 + 2ε

3 ζ = a, being a an integration constant; multiplying by ζχ and integrating once more,
one finds σ(ζχ)2 + ζ3 + 2εζ2 = 6(aζ + b), for another constant of integration b. This equation can be
solved using elliptic integrals, but we’re considering rapidly decaying solutions, then a, b = 0 and so

σ
(
ζχ
)2

+ ζ3 + 2εζ2 = 0.

This equation can be integrated once again [DrJ993], but it’s simpler to verify directly that ζ(χ) =
a sech2(βχ) solves it: after substitution, we find that a = 4σβ2 and ε = −2σβ2. Having then in mind
the definition of the moving variable χ, the solitary wave–type solution becomes

ζ(x, t) = a sech2

{
1

2

( a
σ

) 1
2
[
x− (gh)

1
2

(
1 +

a

2h

)
t
]}

. (1.31)

This agrees with equations (1.27) and (1.28) iff we neglect surface tension so that σ = 1
3h

3) and assume
that the water depth is much bigger than the maximum wave amplitude (i.e. a/h� 1), for then

c ∼
(
gh
)1/2(

1 +
1

2

a

h

)
, β ∼ 1

2

(3a

h3

)1/2

.

Thus velocity is proportional to the wave amplitude and width (defined as the distance between points
of height a/2, say) is inversely proportional to

√
a, i.e. taller waves travel faster and are narrower.

We are left with stability properties of KdV solitary wave solutions; in fact, we need to explain why
they re–emerge with the same form, up to a phase change, after interactions (see figure). The first
intuition there was something unusual about this phenomenon came in 1953, in Los Alamos, where E.
Fermi (1901–1954), J. Pasta (1918–1984) and S. Ulam (1909–1984) were working on a new problem.

10Equivalently, we can deduce equation (1.30) directly from (1.16). In fact, stationary wave solutions have form u(x, t) =
f(x− ct): substituting this in (1.16) one gets the ODE f ′′′ + (αf − c)f ′ = 0, which is nothing but equation (1.30).
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1.4 The Fermi–Pasta–Ulam problem. During the summer of 1953, at the Los Alamos National
Laboratory, E. Fermi, J. Pasta and S. Ulam11 where performing some simulations for the oscillations
in nonlinear lattices, in order to study the thermalization process of a solid [FPU955]. In particular,
they wish to analyze how a system with many degrees of freedom evolves from a near–equilibrium state
towards thermalization after adding a weak (nearest neighbor) nonlinear interaction.

Figure 5: k–mode energy Ek = Ek(t) (equa-
tion (1.35)) for the three lowest normal modes
[DPR005] (up); super–recurrence of k = 1
mode [TuM972] (bottom).

Their original idea was to simulate the one–dimensional
analogue of atoms in a crystals: a long chain of linear
oscillators with a weak nonlinear correction (quadratic for
the FPU–α and cubic for the FPU–β one). In light of the
equipartition theorem (a consequence of ergodicity), Fermi,
Pasta and Ulam thought that, due to nonlinear correction,
the energy introduced into the lowest normal mode (i.e.
k = 1) should have slowly drifted to other modes, even-
tually reaching thermalization [DaR008]. First calculations
indeed suggested that this was the case; however, letting the
program run longer, they discovered (with great surprise)
that the system departed from the near–equipartition state,
evolving towards a state where almost all the energy (up to
3%) was back to mode k = 1 (see Figure 5, up). Further in-
vestigations, performed later with faster computers, showed
that the same phenomenon repeats many times and that a
super–recurrence occurs at very late times, at which the
100% of the initial energy is recovered by the initial mode
(see Figure 5, bottom). Therefore, the system behaved in a
completely different way with respect to what was expected.
This highly remarkable result, known as the ""FPU para-
dox ”, shows that nonlinearity is not enough to guarantee
the equipartition of energy [DaR008].

In order to show how the FPU paradox was solved, let’s
introduce the system more formally12. Let ` be the length
of a string of mass M , aligned to the x–axis with origin
fixed in the left extreme of the string itself. Divide then
the interval [0, `] in N + 1 segments of length h ≡ /̀N+1,
each one reduced to a point with mass m ≡ M/N+2; define
xn := nh, n = 1, 2, . . . , N , the equilibrium position of the

n–th oscillator so that x0 ≡ 0 and xN+1 ≡ ` are the coordinates of the string’s endings (see figure).

We add now a small perturbation to the system. Let’s then identify by ηn the displacement of the n–
th oscillator from the equilibrium position (such that η0 = 0 = ηN+1) and define with x′n(t) ≡ xn+ηn(t)
the position of the mass point ad time t; also, assume the (nearest neighbor) interacting potential of
the form U(δn) = 1

2kδ
2
n + 1

3kβδ
3
n, where β(� 1) is a coefficient measuring the intensity of the nonlinear

contribution and δn ≡ [(x′n+1 − x′n) − h] = (ηn+1 − ηn). If we chose as generalized coordinated the

11With the fundamental contribution of M. Tsingou (1928), one of the very first computational physicist [Dau008].
12For matter of choice, we’re going to consider the FPU–β model; similar arguments follows for the α one.
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(mutually independent) displacements {ηn}n=1,2,...,N , we finally can write the lagrangian

L =
m

2

N∑
n=1

η̇2
n −

k

2

N∑
n=1

(ηn+1 − ηn)
2 − kβ

3

N∑
n=1

(ηn+1 − ηn)
3
. (1.32)

Consequently, the Euler–Lagrange equation of motion for the n–th oscillator is

mη̈n = k(ηn+1 + ηn−1 − 2ηn)
[
1 + β(ηn+1 − ηn−1)

]
, η0(t) = 0 = ηN+1(t), ∀ t ∈ R+

0 . (1.33)

Being interested in studying the lattice motion starting from the equilibrium state, Fermi, Pasta and
Ulam imposed the additional condition η̇n(0) = 0 for n = 1, 2, . . . , N . The Cauchy problem for equation
(1.33) is then completely determined by the initial displacements {ηn(0)}n=1,2,...,N of the N oscillators.

It has to be noted that in absence of the nonlinear interaction (i.e. for β = 0), the solutions of (1.33)
can be written in terms of the normal modes13 (m = k = 1 for sake of simplicity)

Qk(t) =
√

2
N+1

N∑
n=1

ηn(t) sin

(
nkπ

N + 1

)
, k = 1, 2, . . . , N, (1.34)

with frequencies and energies respectively given by [For992]

ωk = 2 sin

(
π

2

k

N + 1

)
, Ek =

1

2

(
Q̇2
k + ω2

kQ
2
k

)
. (1.35)

Since the system is composed by N uncoupled harmonic oscillators, the energies {Ek}k=1,2,...,N are
constant of motion for every pair of initial condition and so no thermalization process occurs. If instead
the β is small but not zero, then equation (1.33) can be written in mode representation as

Q̈k + ω2
kQk = β

N∑
i,j=1

CijQiQjωiωj , (1.36)

where the coefficients Cij define the complicate dependence of the motion from the nonlinear interaction.
The presence of the last term led Fermi, Pasta and Ulam to think that energy would have slowly drifted
to other modes, reaching thermalization14.

1.4.1 The solution and the discovery of solitons. The solution of the FPU paradox came in 1965 and
is two–fold: from one side it’s due to deterministic chaos and from another to the existence of solitons.
The first line of thought was developed in 1965 by B. V. Chirikov (1928–2008) and F. M. Izrailev
starting from an important result obtained some years earlier by A. N. Kolmogorov (1903–1987), J.
K. Moser (1928–1999) and V. I. Arnol’d (1937–2010), known today as KAM theorem. Invoking the
last one, Chirikov and Izrailev proved that if the perturbation in the FPU system is sufficiently strong
(at least to induce a ""superposition” of the nonlinear resonances), then the observed recurrences brakes
up and the system state goes rapidly towards thermalization [ChI965].

The second approach, instead, was proposed by N. J. Zabusky and M. D. Kruskal using the so–called
continuum limit [ZaK965]; they succeed to relate the periodic behavior observed by Fermi, Pasta and
Ulam to the dynamics of localized excitations, which they called ""solitons”, obtained as solution of the
KdV equation, which turned out to be nothing but the continuum limit of equation (1.33). In order to
discuss the last line of thought, let’s rewrite equation (1.33) in terms of the density ρ and the elasticity
coefficient µ of the string, defined s.t. m = ρh, k = µ/h. Then equation (1.33) takes the form

η̈n = c2
(
ηn+1 + ηn−1 − 2ηn

h2

)[
1 + β(ηn+1 − ηn−1)

]
, c ≡

√
µ/ρ. (1.37)

13I.e., the Fourier transform of the displacements {ηn(t)}n=1,2,...,N with initial conditions η0 = 0 = ηN+1.
14Notice that to prove this assumption, Fermi, Pasta and Ulam integrated the equations of motion (1.36) for different

values of β, fixing the initial shape of the string as sinusoidal one.
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To study the continuum limit of the latter equation, we need to find a function u = u(x; t), with
x ∈ [0, `], that should spatially interpolate the discretized shape of the string, i.e. such that

u(xn, t) = u(nh, t) = ηn(t), ∀n = 1, 2, . . . , N. (1.38)

Notice that η̈n = utt(xn; t) and ηn±1 = u(xn ± h; t), for n = 1, 2, . . . , N . Substituting in (1.37), we find

utt(x, t) = c2
u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2

{
1 + β

[
u(x+ h, t)− u(x− h, t)

]}
. (1.39)

Assuming the function u = u(x; t) to be analytic, we can expand it in Taylor series

1

c2
utt = 2

∑
n∈N

h2n−2ux2n

(2n)!

[
1 + 2β

∑
k∈N

h2k−1ux2k−1

(2k − 1)!

]
= 2

[
uxx
2!

+
h2

4!
ux4 +

h4

6!
ux6 +O(h6)

]
+

+ 4βh

[
uxx
2!

+
h2

4!
ux4 +

h4

6!
ux6 +O(h6)

][
ux +

h2

3!
ux3 +

h4

5!
ux5 +O(h6)

]
.

Neglecting infinitesimals of order higher than h6 and performing the scaling transformation (x, t) 7→
(ξ, τ), with ξ ≡ x− ct and τ ≡ (βh)ct, one finds the equation15

uξτ −
1

2
βhuττ = − 1

24

h

β
uξ4 −

1

840

h3

β
uξ6 − 2

(
uξξ
2

+
h2

4!
uξ4 +

h4

6!
uξ6

)(
uξ +

h2

3!
uξ3 +

h4

5!
uξ5

)
.

Taking then the continuum limit (i.e. h→ 0), reminding that the nonlinear perturbation is small (i.e.,
β → 0) and assuming that h, β tend to zero with the same velocity (meaning that hβ = O(h2)), we
finally find the PDE uξτ + δ2uξ4 + uξuξ2 = 0, where δ2 ≡ limh,β→0

√
h/24β. Considering then the sub-

stitution w ≡ uξ, one recovers the usual form of the KdV equation, that is

Figure 6: ZK solution: t = 0 (dotted line), tb =
1/π (broken line) and t = 3.6/π (full line) [ZaK965].

wτ + wwξ + δ2wξξξ = 0. (1.40)

Having discovered the existence of a relation be-
tween the FPU equation and KdV, Zabusky and
Kruskal considered the initial value problem of (1.40)
with periodic boundary conditions: they chose δ =
0.022 and assumed a cosine initial shape u(x, 0) =
cos(πx) with x ∈ [0, 2] (see Figure 6) [DrJ993]. From
their simulations, it was observed that at first the non-
linear term wwξ of equation (1.40) dominated over the
dispersive one δ2wξξξ (being δ � 1) and, as usual, the
wave increase in those regions where it has negative
slope16. At later times this dominance regime starts
to invert itself and the dispersive terms balances the
nonlinearity, avoiding the formation of a discontinuity;
then the solution develops a train of eight well defined waves (full line) each one with small wavelength
(of order δ). The amplitudes of the oscillations grow and finally each oscillation achieves an almost
steady amplitude (increasing linearly from left to right) and has a shape almost identical to that of an
individual KdV–solitary–wave solution (i.e. sinh2–like). «Finally», as Zabusky and Kruskal reported in
their paper [ZaK965], «each such ""solitary–wave pulse” or ""soliton” begins to move uniformly at a
rate which is linearly proportional to its amplitude. Thus the solitons spread apart». However, having
assumed periodic boundary conditions, «two or more solitons eventually overlap spatially and interact
nonlinearly» and, shortly after the interaction, «they reappear virtually unaffected in size or shape».

15Under re–scaling, differential operators transform simultaneously as follows: ∂kx = ∂kξ and ∂t = −c(∂ξ − βh∂τ ), so
∂2t = c2(∂2ξ − 2βh∂ξτ + β2h2∂2τ ). Thus in coordinates (ξ, τ) the d’Alembertian has form � = −2βh∂ξτ + (βh)2∂2τ .

16Assuming u(x, 0) has negative slope, it’s possible to prove that higher parts of the wave travel faster than lower ones.
The global effect is that the wave steepens till a characteristic time tb (called ""breaking time”) at which the graph of the
function u = u(x; t) has a vertical tangent; function u(x; t) becomes multi–valued for t > tb and a shock wave arises.
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Actually, the only difference after the nonlinear in-
teraction is a small phase change (see figure on the left
[AbS981]), i.e. a shifting of the center of each wave with
respect to where it would have been if it traveled alone.
This property inspired Zabusky and Kruskal to call these
waves ""solitons”, in order to emphasize their particle–
like character (e.g. like protons, photons or phonons).
Therefore FPU recurrences can be understood as (non-
linear) superpositions of solitons.

This discovery leaded to an intese study of the sub-
ject, with the aim to clarify the novel aspects that ap-
peared. For example, it was not clear if (and if so, what)
other NLEE had soliton solutions and how to obtain
them; answering these questions is the main purpose of
the present work. Of course, in order to detect and cal-
culate soliton solutions of NLEE, we need a precise defi-
nition of a soliton. This is not easy task; for now we shall
associate the term with any NLEE solution which rep-
resents a stationary, localized (i.e. decays or approach a
constant value at infinity) wave that can interact strongly
with other solitons and retain its identity17 [DrJ993].

2 Miura Transform and KdV solutions by Inverse Scattering

2.1 Conservation laws and Miura transform. In the previous section we’ve learned that the mech-
anism behind the formation of solitons is (roughly speaking) a delicate balance between nonlinear and
dispersive wave effects. From the beginning this observation attracted the attention of many researchers
and, few years after the discovery of Zabusky and Kruskal, it was understood that the phenomenon
could be explained in terms of one or more conservation laws, which we shall presently define.

Definition 2.1 - A conservation law associated to ut = D(u, ux, . . . ) is an expression of the form

Tt + Xx = 0, (2.1)

where T = T (x, t;u, ux, ut, . . . ) is the conserved density and −X = −X (x, t;u, ux, ut, . . . ) its flux.

Notice that a local conservation law depends only on u and its derivatives. For these conservation laws
it’s possible to integrate equation (2.1) to see that I [u] ≡

´
R T (u, ux, ut, . . . ) dx is a constant, i.e. It = 0.

We then say that I is a constant of the motion of an integral of the differential equation18.
Consider now the KdV equation. Two conservation laws follow by direct examination:

ut +
(
α
2 u

2 + uxx

)
x

= 0,
(

1
2u

2
)
t

+
(
α
3 u

3 + uuxx − 1
2u

2
x

)
x

= 0,

where the latter follows from the former by multiplying by u. Besides these ""trivial” conservation laws,
others were discovered by R. M. Miura [Miu968] and it was conjectured that there was an infinite

17Notice that in the context of the KdV equation and other similar equations, it’s usual to refer to a single–soliton
solution as the solitary–wave, but when more then one of them appear in a solution, they are called solitons. Another way
to express this is that the soliton becomes a solitary wave when it is infinitely separated from any other soliton. Also, it
has to be pointed out that there exist NLEE that have solitary–wave solutions that are not solitons, whereas others (like
the KdV equation) have solitary–waves which are also solitons.

18Notice that not all constants of the motions arise from conservation laws.
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number of them. In studying KdV conservation laws and those associated to the mKdV (see equation
(1.17)), Miura discovered an important transformation: if v is a solution of (1.17) then (and only then)

u = −
(
v2 + vx

)
(2.2)

is a KdV solution. In particular, renaming mKdV byM[v] and KdV by K[u], the following holds true19

K[u] = − (2v + ∂x)M[v]. (2.3)

The operator on the r.h.s. guarantees the single valuedness of the transformation in one direction only.
The transformation (2.3) leaded to the discovery of other important properties of the KdV equation.

Originally (1968) it was the basis of a proof, presented by C. S. Gardner, Kruskal and Miura, that the
KdV equation has indeed an infinite number of conserved quantities [MGK968]. The basic idea follows
from the property of Galilei–invariance of the KdV equation, i.e. the transformation{

x′ = x+ 6
ε2 t,

t′ = t,
u(x, t) = u′(x′, t′)− 1

ε2
, (2.4)

leaves the KdV equation invariant. The proof goes as follows: equation (2.4) implies the differential
operator transformations ∂x = ∂x′ , ∂t = 6

ε2 ∂x′ + ∂t′ , from which we obtain

K[u(x, t)]
(x,t) 7→(x′,t′)−−−−−−−−→ ut′ +

6

ε2
ux′ + 6uux′ + ux′x′x′ = u′t′ + 6u′u′x′ + u′x′x′x′ = K[u′(x′, t′)].

Analogously it’s possible to prove that, under Galilei transformations and the rescaling

v(x, t) = −εw(x′, t′) + 1
ε , (2.5)

the mKdV equation transforms itself into a conservation law equation of the form [AbS981]

M[v(x, t)] = 0
(x,t) 7→(x′,t′)−−−−−−−−→ wt′ +

(
6w2 − 2ε2w3 + wx′x′

)
x′

= 0. (2.6)

Thus w is a conserved density and
´
w dx′ is a constant of the motion for the mKdV equation. Substi-

tution of the rescaling expressions (2.4), (2.5) in the Miura transformation (2.2), yields

u′ = 2w + εwx′ − ε2w2. (2.7)

Thinking of ε� 1, we can solve equation (2.7) iteratively20: after reordering in powers of ε, one finds

w = w0 + εw1 + ε2w2 +O(ε3) ≡ u′

2
− ε

4
u′x′ +

ε2

8

[
(u′)

2
+ u′x′x′

]
+O(ε3). (2.8)

Being w a conserved density, it must be independent of the parameter ε: thus also (w0, w1, w2, . . . ) are
(distinct, nontrivial) conserved densities, which implies that KdV and mKdV have an infinite number of
constants of the motion. We shall give later an alternative proof of this property for the KdV equation.

Let’s go back to the Miura transformation. Note that equation (2.2) can be interpreted as a Riccati
equation, a second order ODE with non–constant coefficients of the form

yx(x) = P(x) +Q(x)y(x) +R(x)y2(x), (2.9)
19From the expression (2.2) we find the following transformations: ut = − (2vvt + vxt), ux = − (2vvx + vxx) and so

uxxx = − (6vxxvx + 2vvxxx + vxxxx); substitutions in the equation for K[u] with α = 6 complete the proof.
20Notice that w = u′

2
− ε

2
wx′ + ε2

2
w2, thus wx′ =

u′
x′
2
− ε

2
wx′x′ +O(ε2), wx′x′ =

u′
x′x′
2

+O(ε) and so on; therefore

w = u′

2
− ε

2

[
u′
x′
2
− ε

2

(
u′
x′x′
2
− . . .

)]
+ ε2

2

(
u′

2
+ . . .

)2
= u′

2
− ε

4
u′x′ + ε2

8

[
u′x′x′ + (u′)2

]
+O(ε3).
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begin P(x), Q(x), R(x) smooth, non–zero, real valued functions. Equation (2.9) is generalization of the
Bernoulli equation (which is recovered assuming P = 0): it was introduced by Count J. F. Riccati
(1676–1754) and can be linearized applying the following transformation

y ≡ − ψx
Rψ

=⇒ yx =
ψx (ψRx + ψxR)− ψxxψR

(Rψ)
2 . (2.10)

Substituting the latter in (2.9), we obtain the second order ODE with non–constant coefficients

Rψxx − (Rx +QR)ψx +R2Pψ = 0. (2.11)

Therefore, if ψ is a solution of the linearized Riccati equation, then y is a solution of the Riccati equation.
Comparing equation (2.2) with (2.9) we see that the Miura transformation is a Riccati equation for v
in terms of u, with P(x) = −u(x), Q(x) = 0, R(x) = −1. Thus equation (2.2) can be linearized by the
transformation v = ψx/ψ, from which one obtains ψxx + uψ = 0. However, since KdV must preserve
Galilei–invariance, Miura, Gardner and Kruskal considered [MGK968]

ψxx + (λ+ u)ψ = 0, (2.12)

which is exactly the stationary linear Schrödinger equation in one dimension. This result has great
relevance: if ψ is a solution of equation (2.12), then u = −(v2 + vx) with v = ψx/ψ is a KdV solution.
In this sense we can think the linear Schrödinger equation as an implicit linearization for KdV.

In 1967 the team Gardner, Greene, Kruskal and Miura (hereafter abbreviated GGKM) discovered
a method for exact solving the initial value problem for the KdV equation [GGKM67, GGKM74].
Before describing the original procedure, let’s discuss the following, slightly different, method [AbS981].
Associate to equation (2.12) the time evolution equation

ψt = Aψ + Bψx, (2.13)

where A,B are scalar functions independent of ψ. Consider now the system of equations (2.12), (2.13):
forcing the so–called compatibility condition ψxxt = ψtxx, yields{

ψxx = − (λ+ u)ψ,

ψt = Aψ + Bψx,
ψxxt=ψtxx−−−−−−−→

{
λt + ut +Axx − 2Bx(λ+ u)− Bux = 0,

2Ax + Bxx = 0.
(2.14)

Choosing now A = ux and B = 2(2λ− u), we get the non–trivial expression

λt + ut + uxxx + 6uux = λt +K[u] = 0 =⇒ K[u] = 0 ⇐⇒ λt = 0. (2.15)

Hence KdV is satisfied iif the eigenvalues of the associated Schrödinger equation are time–independent
(i.e. they are constants of the motion in the KdV equation). There exist some deductive procedures to
calculate the expressions for A and B; also, it can be proved that there are infinitely many equations of
the form (2.13) associated to (2.12), corresponding to different choices of functions A,B. In subsequent
sections we shall discuss how results (2.12)–(2.15) can be used to reconstruct u(x, t) given u(x, 0).

Remark 2.1 – The sufficiency of condition (2.15) can be proved by following an alternative procedure.
Consider the system of equations (2.14) and suppose that λt = 0; furthermore, let A,B be two first
order polynomials in λ, i.e. A = A0 + λA1 and B = B0 + λB1. Substitution in system (2.14) yields{

2λ2B1x − λ1
(
A1xx − 2B0x − 2B1xu− B1ux

)
+ λ0

(
A0xx − 2B0xu− B0ux + ut

)
= 0,

λ1
(
B1xx + 2A1x

)
+ λ0

(
B0xx + 2A0x

)
= 0.

Now force to zero the coefficients belonging to the same powers of λ: from λ2 one gets B1x = 0 and
then B1(x, t) = b1(t) (with b1 = b1(t) a real function), whilst coefficients of λ1, λ0 give respectively

λ1 :

{
A1xx − 2B0x − 2B1xu− B1ux = 0,

B1xx + 2A1x = 0,
λ0 :

{
A0xx − 2B0xu− B0ux + ut = 0,

B0xx + 2A0x = 0.
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Solutions of the first system are A1(x, t) = a1(t) and B0(x, t) = − 1
2b1(t)u(x, t) + b2(t), which combined

with the first equation of the second system yields A0(x, t) = 1
4b1(t)ux(x, t) + a2(t). Substituting now

the expressions for A0,A1,B1 and B0 in the second equation of the second system, we find

1

4
b1uxxx +

3

2
b1uux − b2ux + ut = 0

b1(t)
!
=4, b2(t)

!
=0−−−−−−−−−−−→

∀ t∈R+
0

K[u] = 0.

Note that a1, a2 are not involved in the last expression, so it’s possible to set a1(t) = 0 = a2(t) ∀ t ∈ R+
0

without loss of generality. Inserting what obtained in A and B gives A = ux and B = 2(2λ− u), which
are exactly the positions that GGKM made when passing from equation (2.14) to equation (2.15).

2.2 Exact solutions by Inverse Scattering. This paragraph contains a brief, somehow historical,
introduction to the Inverse Scattering Transform method for the KdV equation as was originally intro-
duced by GGKM21 in 1967. Again, we consider only initial data that decay sufficiently rapidly.

Let’s recall some properties of the stationary Schrödinger equation. Assuming u : R → R to be
a smooth real potential function, it’s known that equation (2.12) admits two kind of solutions: bound
states, characterized by negative eigenvalues and a countable set of L2(R) eigenfunctions and unbound
states, corresponding to positive eigenvalue and generalized eigenfunctions behaving asymptotically as
periodic waves. Under the additional hypothesis that u(x, t) decays sufficiently rapidly as |x| → ∞, one
can show that there is in fact only a finite number N of negative eigenvalues. Our purpose is to solve
the KdV equation by determining the time evolution of λ = λ(t) and ψ = ψ(x, t) in equation (2.12).

Consider first bound state solutions. Solving equation (2.12) for u and substituting in KdV, gives

λntψ
2
n +

(
ψnQx − ψnxQ

)
x

= 0, Q ≡ ψnt + ψnxxx − 3(λ− u)ψnx. (2.16)

Equation (2.16) can be integrated: since eigenfunctions are square integrable, one finds λnt = 0, consis-
tently with result (2.15). Therefore equation (2.16) can be directly integrated [Kar998]

ψnxx
ψn

=
Qxx
Q

=⇒ Q = C(t)ψn + D(t)ψn

ˆ x

0

d s

ψ2
n(s)

, (2.17)

and eigenfunctions can be normalized with respect to the L2(R)–norm, i.e.
´
R ψ

2
n(x, t) dx = 1. Having

negative eigenvalues, rewrite λn as (ıκn)2 with κn ∈ R+. Note that function φn(x) ≡ ψn
´ x

0
ψ−2
n (s) d s is

a solution of (2.16); but we know that, asymptotically, solutions of (2.12) look like linear combinations
of e±κnx and, being L2–functions, ψn → 0 as |x| → ∞. Thus φn blows up and we must have D = 0.
Substituting in equation (2.17), multiplying by ψn and integrating, one funds immediately that C = 0
for discrete eigenvalues. Now introduce the functions cn = cn(t) for n = 1, 2, . . . , N , defined such that

ψn ∼ cn(t)e−κnx as |x| → ∞.

Substituting in equation (2.17), using the fact that u→ 0 as |x| → ∞ and λt = 0, one finds

d cn(t)

d t
= 4κ3

ncn(t). (2.18)

Thus a trivial calculations allows to determine the time evolution of the coefficients {cn}n=1,2...,N , which
constitute the discrete part of the so–called scattering data for the eigenvalue problem in equation (2.12).

We are left with the case of unbound states. Having in mind that solutions of equation (2.12)
belonging to positive eigenvalues λ ≡ k2 ∈ R+ are asymptotically linear combinations of e±ıkx (being
u→ 0 as |x| → ∞) and following the same arguments as before, one can prove that λt = 0, as expected.
Thus, in order to solve the KdV equation we need to complete the calculation of the scattering data for

21We’ll mainly follow S. Karigiannis, ""The Inverse Scattering Transform and integrability of NLEE ” [Kar998].
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the eigenvalue problem in equation (2.12). With this aim, let’s calculate the reflection and transmission
coefficients associated to the following asymptotic boundary conditions

ψ ∼

{
e−ıkx + ρ(k, t)eıkx as x→ +∞,

τ(k, t)e−ıkx as x→ −∞.
(2.19)

Actually we only need the first boundary condition to solve KdV; in fact, forcing the latter in (2.16)
gives us [Kar998] C(k) = 4ık3, D(k) = 0, ∀ k ∈ R∗ := R \ {0} and substitution of (2.19) in (2.16) yields

d ρ(k, t)

d t
= 8ık3ρ(k, t),

d τ(k, t)

d t
= 0, (2.20)

which are again trivially integrable. Using equations (2.18) and (2.20), it’s possible to completely
determine the time evolution of the scattering data, which we define formally as

S(t) :=
{{
cn(t), κn(t)

}
n=1,2,...,N

; ρ(k, t), τ(k, t), k ∈ R∗
}
.

Once scattering data are known, one can finally solve the Cauchy problem for KdV. In fact the initial
condition u(x, 0) = u0 yields the initial scattering data S(0) and we can use equations (2.18), (2.20) to
calculate S(t), ∀ t ∈ R+. So what remains to solve the KdV initial value problem is to invert S(t) to
get u(x, t). This procedure, whose key point lies in the fact that the temporal variable t plays the role
of a parameter, involves a linear integral equation (LIE), known as Gel’fand–Levitan–Marchenko
equation (GLM). We will discuss this inversion method in the next paragraph.

Thus we have in principle the inverse scattering method, summarized in the following diagram.

u(x; 0)
direct scattering, linear ODE at t = 0−−−−−−−−−−−−−−−−−−−−−−−−→ S(0)

solution to NLEE

y ytime evolution of S

u(x; t) ←−−−−−−−−−−−−−−−−−−−−−−−−
inverse scattering, linear IE at t ∈ R+

S(t)

ı) Map the KdV–solution u = u(x, t) to a potential in a stationary Schrödinger equation; ıı) once the
initial condition u = u(x, 0) is given, calculate the initial scattering data S(0) and their time evolution
S(t); ııı) invert the process to calculate the potential u(x, t). Note that the power of the method consists
in reducing a nonlinear initial value problem to the solution of linear ODEs (for the time evolution of
the scattering data) and a linear integral equation (where t is nothing but a parameter).

Remark 2.4. The IST method can be interpreted as a nonlinear analogue of the Fourier transform. To
see this, consider the linearized KdV equation: ut + uxxx = 0. Fourier transforming both sides yields

ut(x, t) + uxxx(x, t) = 0
û≡F [u]−−−−−→ ût(k, t) = ık3û(k, t),

since u → 0 as |x| → ∞. Solving the linear ODE with the initial condition û(k, 0) = F [u(x, 0)], one
finds û = û(k, t) ∀ t ∈ R+. Inversion of the Fourier–transform gives the solution u = u(x, t) for the
linearized KdV. Note that in the last step t is nothing more than a parameter (as for GLM).

We finish with summarizing our results in a way that will become useful in §3. Combine equations
(2.12) and (2.17): from the former one gets λψx = −ψxxx − uxψ − uψx and substitution in equation
(2.12) yields ψt = −4ψxxx − 3uxψ − 6uψx + Cψ. Therefore we are left with the system{

Lψ ≡
[
−∂2

x − u(x, t)
]
ψ = λψ,

Mψ ≡
[
−4∂3

x − 3
(
u∂x + ∂xu

)
+ C

]
ψ = ψt.

(2.21)

In what follows we’ll call L the operator of the spectral problem and M the operator of an associated
time–evolution equation. Note that for discrete eigenvalues (where C(t) = 0) it is possible to recover
relation λt = 0 by forcing the compatibility condition ψxxt = ψtxx in equations (2.21).
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2.3 Gel’fand–Levitan–Marchenko and KdV soliton solutions. Introduced in 1950’s by I. M.
Gel’fand (1913–2009), B. L. Levitan (1914–2004) and V. A. Marchenko (1922) [GeL951, Mar955],
the inverse scattering method for the Schrödinger equation goes sketchily as follows [Akt009]: first form
from the time–evolved scattering data S(t) the kernel B : R× R+

0 → R, defined as

B(ξ; t) :=

N∑
n=1

c2n(t)e−κnξ +
1

2π

ˆ
R
ρ(k, t)eıkξ d k, (2.22)

then solve the corresponding Gel’fand–Levitan–Marchenko integral equation [New983]

K (x, z; t) + B(x+ z; t) +

ˆ
R

K (x, y; t)B(y + z; t) d y = 0, (2.23)

for function K : R2 × R+
0 → R which is univocally defined by equation (2.23) for x ≤ z < +∞, is zero

for x > z and is subjected to the asymptotic boundary condition K (y, z; t)→ 0 as y → +∞. Then the
potential u = u(x, t) that gives rise to this scattering data is given by [Kar998]

u(x, t) = 2∂xK (x, x; t). (2.24)

Remark 2.2 – Let C(R2 ×R+
0 ) denote the Banach space of bounded, continuous real–valued functions

on R2 × R+
0 with the sup norm. Define the functional FB : C(R2 × R+

0 )→ C(R2 × R+
0 ) as [Pal000]

FB

(
K
)
(x, z; t) = −B(x+ z; t)−

ˆ
R

K (x, y; t)B(y + z; t) d y.

Then K satisfies GLM iif it’s a fixed–point of FB. Note that FB is Lipschitz with constant ‖B‖L1 ,
so if ‖B‖L1

< 1 then FB is a contraction on (C, d), being d : C× C→ R the metric induced by the sup
norm. Then the Banach fixed point theorem implies that the GLM equation has a unique solution,
obtained by taking the limit of the sequence {Kn}n∈N, with K1 ≡ −B and Kn+1 = FB(Kn).

Remark 2.3 – Suppose that ρ(k, t) = 0 identically and that B is ""separable”, i.e. it satisfy an identity
of the form B(x + z; t) =

∑N
n=1 Xn(x)Zn(z; t), begin Xn,Zn the n–th components of the row and

column N–dimensional vectors X ,Z , respectively. Then the GLM equation takes the form

K (x, z; t) +

N∑
n=1

Xn(x)Zn(z; t) +

N∑
n=1

Zn(z; t)

ˆ +∞

x

K (x, y; t)Xn(y) d y = 0 (2.25)

and it follows that K must have the form K (x, z; t) = Y (x; t)Z (z; t), where Y (x; t) is an N–
dimensional row–vector whose entries are unknown functions of x and t. Substitution in (2.25) yields

Yn(x; t) + Xn(x) +

N∑
m=1

anm(x; t)Ym(x; t) = 0, anm(x; t) ≡
ˆ +∞

x

Xn(y)Zm(y; t) d y;

setting A(x; t) ≡
(
anm(x; t)

)
n,m=1,2,...,N

gives X + (1N + A)Y = ON ; therefore Y = −A −1X , having
defined A (x; t) ≡ 1N + A(x; t) and supposed it non–singular ∀ (x, t) ∈ R× R+

0 . Finally we have

K (x, z; t) = −
N∑
n=1

Xn(x)

N∑
m=1

A −1
nm(x; t)Zm(z; t) = −X (x)A −1(x; t)Z (z; t). (2.26)

Hence, under the hypothesis of a reflectionless potential ρ(k, t) = 0 and a separable kernel B(x+ z; t) ≡
X (x)Z (z; t), the GLM equation is reduced to N linear algebraic equations.
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The presence of a reflectionless potential has a central role in the search for soliton solutions to
NLEEs. In fact, it turns out that if ρ(x, 0) = 0, then the solution of the GLM equation describes the
interaction of N solitons22, each one with amplitude and speed characterized by the κn’s and position
characterized by the cn’s. To show this property for the KdV equation, integrate expression (2.20) for
the reflection coefficient to get ρ(k, t) = ρ(k, 0)e8ık3t ∀ (k, t) ∈ R∗ × R+; thus, if ρ(k, 0) = 0 it follows
that ρ(k, t) = 0 ∀ (k, t) ∈ R∗×R+

0 which means that if u = u(x, t) evolves by KdV and it’s reflectionless
at t = 0, then it stays reflectionless for all t. Therefore the kernel (2.22) is separable and we have

X (KdV)(x) =
(
e−κ1x, e−κ2x, . . . , e−κNx

)
, Z (KdV)(z; t) =

(
c1(t)e−κ1z, c2(t)e−κ2z, . . . , cN (t)e−κNz

)ᵀ
.

From the above expressions one finds also immediately that, for all n,m = 1, 2, . . . , N , it is

a(KdV)
nm (x; t) =

ˆ +∞

x

Xn(y)Zm(y; t) d y = c2n(t)
e−(κn+κm)x

κn + κm
;

recalling now that Anm(x; t) ≡ δnm + anm(x; t) for n,m = 1, 2, . . . , N , we get the relation

A (KdV)(x; t) =

{
δnm + c2n(0)

e−(κn+κm)x+8κ3
nt

κn + κm

}
n,m=1,2,...,N

, (2.27)

having used equation (2.18). Now ∂xA
(KdV)
mn = −c2me−(κn+κm)x, thus expression (2.26) for z = x yields

K (KdV) = −
N∑

n,m=1

[
A −1

(KdV)

]
nm

c2me
−(κn+κm)x =

N∑
n,m=1

[
A −1

(KdV)

]
nm

∂xA
(KdV)
mn

= Tr
[
A −1

(KdV)∂xA
(KdV)

]
= ∂xTr

[
ln
(
A (KdV)

)]
= ∂x ln

[
det
(
A (KdV)

)]
,

having used the well–known identity det
(
eA
)

= eTr(A) with A = ln A in the last passage. Substitution
in (2.24) gives finally the expression for N–solitons solution of the KdV equation, namely

u
(KdV)
N–sol (x; t) = 2∂2

x ln
{

det
[
A (KdV)(x; t)

]}
. (2.28)

Consider the case N = 1 (see note 18, pg. 15): substitution of expression (2.27) in (2.28) yields

u
(KdV)
1–sol (x; t) = 2∂2

x ln
[
1 + c2(t)

2κ e−2κx
]

= 2κ2sech2
[
κ(x− 4κ2t) + θ0

]
, θ0 ≡ ln

√
2κ

c(0) ,

being κ ≡ κ1, c ≡ c1; therefore, we’ve recovered our earlier formula (1.31) for the KdV solitary–wave
solution. In the same fashion, one finds for the KdV 2–solitons solution the expression [Pal000]

u
(KdV)
2-sol = 2

κ2
1z1 + κ2

2z2 + 2(κ1 + κ2)2z1z2 + α(κ2
1z2 + κ2

2z1)z1z2

(1 + z1 + z2 + αz1z2)2
, (2.29)

where
√
α ≡ κ1−κ2

κ1+κ2
and zi(x; t) ≡ c2i (0)

2κi
e−2τi , being τi ≡ κi(x− 4κ2

i t) for i = 1, 2; note that

det
(
A

(KdV)
2-sol

)
= 1 + z1 + z2 + αz1z2.

Assuming κ1 > κ2, one can show that solution (2.29) actually behaves as a superposition of two traveling
wave solutions of the form (1.31). With this aim, let’s analyze the 2–solitons asymptotics [Dun010],
starting with the case t → −∞: in the limit x → −∞ one has det(A ) ∼ e−2(τ1+τ2) and then u ∼ 0,
as expected. Now move along the x–axis to the right and consider the leading term in det(A ) when

22Note that soliton solutions always correspond to eigenvalue problems with reflectionless potentials.
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τ1 = 0 and then when τ2 = 0. We first reach the point x = 4κ2
1t where τ1 = 0: in the neighborhood of

this point one has τ2 = 4κ2(κ2
1 − κ2

2)� 0, which means that

det
(
A

(KdV)
2–sol

)
∼ c22(0)

2κ2
e−2τ2

(
1 +

αc21(0)

2κ1
e−2τ1

)
=⇒ u

(KdV)
2–sol ∼ 2

(
1 +

αc21(0)

2κ1
e−2τ1

)
xx

,

which has the form of a 1–soliton solution with phase θ−1 ≡ 1
2 ln 2κ1/αc21(0). Now move to the left until

reaching the point x = 4κ2
2t where τ2 = 0: around this point τ1 = 4κ1(κ2

2 − κ2
1)� 0 and then

det
(
A

(KdV)
2–sol

)
∼ 1 +

c22(0)

2κ2
e−2τ2 .

Thus the wave profile is a KdV 1–soliton with phase θ−2 = 1
2 ln 2κ2/c22(0). Note that at t = 0 the two

solitons coalesce and the behavior depends on κ1/κ2. Consider now the t→ +∞ limit: if x→ +∞ then
det(A ) ∼ 1 and u ∼ 0. Moving along the x–axis to the left one first reaches the point τ1 = 0, where
τ2 � 0 and the wave–profile is a KdV 1–soliton with phase θ+

1 = 1
2 ln 2κ1/c21(0), and then the point τ2 = 0,

where τ1 � 0 and the single soliton has phase θ+
2 = 1

2 ln 2κ2/αc22(0). Comparing asymptotic phases θ−1 ,
θ+

1 and θ−2 , θ+
2 we can deduce that the taller soliton has overtaken the lower one and that they haven’t

changed in shape but just in phase, with variations given by the expressions

∆θ1 ≡ θ+
1 − θ

−
1 =

1

2
lnα, ∆θ2 ≡ θ+

2 − θ
−
2 = −1

2
lnα;

note that the total phase–shift is zero. Hence we conclude that the KdV 2–soliton solution (2.29) de-
scribes the interaction between two separate solitons, whose only result can be measured by ln

(
κ1−κ2

κ1+κ2

)
,

which is large iif κ1 − κ2 is small, i.e. iff the two solitons have similar velocities [Dun010].

Remark 2.4 – The picture above generalized to the case N > 2. As t → ∓∞ the general (so–called
pure) N–solitons solution (2.28) represents N separate solitons ordered accordingly to their speed: the
tallest (and therefore faster) one is at the front, followed by the second tallest and so on. At t = 0 they
all coalesce and then individual solitons re–emerge in the opposite order as t→ ±∞.

Remark 2.5 – The number N of discrete eigenvalues for the Schrödinger operator equals the number
of KdV solitons at t→ ±∞. This number is encoded in the initial conditions; to see this, consider

u
(KdV)
N–sol (x; 0) ≡ u0(x) = 2N(N + 1)sech2(x), N ∈ N0

and make the change of variable R 3 x 7→ ξ ≡ tanh(x) ∈ (−1, 1) in the Schrödinger equation:

ψxx + u0(x)ψ = k2ψ =⇒ d

d ξ

[
(1− ξ2)

dψ(ξ)

d ξ

]
+

[
N(N + 1) +

k2

1− ξ2

]
ψ(ξ) = 0,

which is nothing but the associated Legendre equation. Analysis of the power series solution of the
latter shows that ψ ∈ L2

(
(−1, 1)

)
iif k2 = −κ2 with κ = 1, 2, . . . , N [Dun010, DrJ993].

2.4 The Hamiltonian formulation. In the last paragraph we have seen that the KdV equation is
IST–solvable and admits N–solitons solutions. However, proceeding in the same fashion as for the KdV
case, it can be shown that every known IST–solvable NLEE admits multi–soliton solutions23. Then a
question arises naturally: does every IST–solvable NLEE admits soliton–solutions? As far as we know
there is no definite answer to this problem nor a theorem which states it; however, we can try to answer
a (somehow) less ambitious question, namely why solitary–wave type solutions for IST–solvable NLEEs
are stable. There are different ways to tackle this problem: here we’re going to give some clues about

23This is, for example, the case of NLS & SG in (1 + 1)–dimensions and of KP & DS in (2 + 1)–dimensions.
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the connection with completely integrable Hamiltonian systems [AbS972, NMPZ84].
First of all, recall some basics of Hamiltonian system. Let’s consider a system with n degrees of

freedom, whose motion is described by a trajectory in a 2n–dimensional phase space M, parametrized
with local coordinates (pi, qi) for i = 1, 2, . . . , n. The dynamical variables of the system are real, smooth
functions f : M× R → R s.t. f = f(q , p; t) and the phase space M is a Poisson manifold, being
equipped with a bilinear map {· , ·}M : C∞(M) × C∞(M) → C∞(M) with respect to which the pair
(C∞(M), {· , ·}M

)
forms an algebra. That maps is called Poisson bracket and is defined as

{
f, g
}
M :=

n∑
i=1

(
fqigpi − fpigqi

)
, ∀ f, g ∈ C∞

(
M× R

)
.

Note that {· , ·}M is an antisymmetric derivation, satisfying the Jacobi identity. If {f, g}M = 0 then
f, g are said to be in involution. The pair (q , p) satisfies the canonical commutation relations{

qi, qj
}
M = 0,

{
pi, pj

}
M = 0,

{
qi, pj

}
M = δij , ∀ i, j = 1, 2, . . . , n.

Once the Hamiltonian function of the system H = H (q , p; t) is given, the evolution of a dynamical
variable f is determined by the well–known Hamilton–Liouville (HL) equation [GPS001]

d f

d t
=
{
f,H

}
M +

∂f

∂t
.

In particular, assuming that the canonical coordinates (q , p) doesn’t depend explicitly on time, one finds
the HL equations of motion ṗi = −Hqi and q̇i = −Hpi for i = 1, 2, . . . , n. Since we’ll soon be interested
in infinite dimensional systems, let’s rewrite the latter equations in symplectic form as

u̇ :=

(
ṗ
q̇

)
=

(
On −1n
1n On

)(
Hp

Hq

)
=: J0Hu , (2.30)

being Hx ≡ (∂x1H , ∂x2H , . . . , ∂xnH )ᵀ. Within this formulation, one can give a different definition of the
Poisson bracket, namely in terms of the standard scalar product on R2n:{

f, g
}
M =

〈
fu ,J0gu

〉
R2n . (2.31)

An arbitrary system v̇ = JGv can be put in Hamiltonian form iff ∃T ∈ GL(R2n) s.t. J0 = T J T −1;
this holds iff J is non–singular and skew–adjoint [Lax978]. Having in mind the infinite dimensional
generalization, let’s drop here the non–singular requirement for the following [Kar998]

Definition 2.2 - A system of differential equations is called Hamiltonian iff it is of the form u̇ = JHu ,
for some skew–adjoint linear operator J and some Hamiltonian function H .

Consider now a dynamical variable f ∈ C∞(M), constant along the Hamiltonian flow. From the
HL equations it follows that {f ,H }M = 0 and it’s also possible to prove the converse [Lax978]. We’ll
say that f is an integral of the motion for the system iff {f ,H }M = 0. Constants of the motion are
important since each of them allows to reduce the order of the system by a factor of 2; this property
underlines the following

Definition 2.3 - An Hamiltonian system with n degrees of freedom is said to be completely integrable
iff it admits n independent24 constant of the motion {fi}i=1,2,...,n, with f1 ≡ H , in involution, i.e. s.t.{

fi, fj
}
M = 0, ∀ i, j = 1, 2, . . . , n.

24Meaning that the gradients {∇fi}i=1,2,...,n are linearly independent vectors on a tangent space to any point inM.
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Integrable systems lead to completely solvable HL equations of the motion; in order to show this, let’s
remind the freedom in the choice of canonical coordinates. Then, consider the coordinate transformation(

q , p
)
7−→

(
Q (q , p), P (q , p)

)
.

This transformation is called canonical iff it leaves invariant the Poisson bracket, i.e. iff{
f(q , p), g(q , q)

}
M(q,p)

=
{
f(Q , P ), g(Q , P )

}
M(Q ,P)

, ∀ f, g ∈ C∞(M).

Consequently, canonical commutation relations and HL equations are invariant under canonical trans-
formations. To construct canonical transformations, one introduces the so–called generating functions
[Arn989]; for example, given a function S = S(q , P ; t) which satisfies the non–degenerate condition
det(SqiPj )i,j=1,2...,n 6= 0, one can construct a canonical transformations by setting pi = Sqi , Qi = SPi and
H ′ = H + St. For completely integrable systems, the idea is to seek for a canonical transformations
s.t. H ′ = H ′(P1, . . . , Pn) and then Pi(t) = Pi(0) = const and Qi(t) = Qi(0) + H ′Pit for i = 1, 2, . . . , n.
The latter would then represent the solutions to the HL equations of motion and the integrable systems
would then be completely solvable by quadratures25. The well–knownArnol’d–Liouville integrability
theorem applies in this contest [Arn989].

Theorem 2.1 - Let (M, {fi}i=1,2,...,n) be a completely integrable Hamiltonian system and let

Mf :=
{

(q , p) ∈M : fi(q , p) = ck, k = 1, 2, . . . , n
}
,

with ck a constant ∀ k = 1, 2, . . . , n, be an n–dimensional level surface of first integrals. Then

. ifM is compact and connected then it is diffeomorphic to an n–torus Tn;

. exists a canonical transformation (q , p) 7→ (I ,φ), where

Ii :=
1

2π

˛
Γi

n∑
j=1

pj d qj , φi ∈ [0, 2π) i = 1, 2, . . . , n,

Γi the i–th basic cycle of Tn, s.t.angles φi are coordinates on Tn and actions Ii are first integrals;

. in action–angle coordinates, the canonical equation of the motion become

İ i(t) = 0, φ̇i(t) = ωi
(

I1, I2, . . . , In
)
, i = 1, 2, . . . , n, (2.32)

where ωi(I ) := ∂IiH
′ are frequencies and H ′(I ,φ) ≡ H

(
q(I ,φ), p(I ,φ)

)
.

Proof. See V. I. Arnol’d – Mathematical Methods of Classical Mechanics, ch. 9, pgg: 258–285.

Remark 2.6 – The actions Ii are independent on the choice of Γi: in fact, given a cycle Γ′i with opposite
orientation with respect to Γi, the Stokes theorem implies that

˛
Γi

n∑
j=1

pj d qj +

˛
Γ′i

n∑
j=1

pj d qj =

‹
Ωi

(
∂qkpj − ∂qjpk

)
d qj ∧ d qk = 0,

being Ωi a cylindroid whose top and bottom surfaces have Γi and Γ′i as boundaries. Note that actions
Ii are also first integrals: assuming det(∂pj fi) 6= 0, the system f (q , p) = c can be solved for the momenta
p = p(q , c) and thus

¸
Γi

p(q , c) · d q only depends on c. Moreover the Ii’s are in involution:

{
Ii, Ij

}
M =

n∑
`,m=1

∂Ii
∂f`

∂Ij
∂fm

{
f`, fm

}
M = 0, ∀ i, j = 1, 2, . . . , n.

25In other words, performing a finite number of algebraic operations and integrations of known functions.
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We can now generalize the discussion to infinite dimensional systems and describe the relation with
IST–solvable NLEEs. Formally one can think to replace our original phase spaceM with the space of
all real valued C∞ rapidly decreasing functions, i.e. the Schwartz space S(R). Thus coordinates are
given by functions u = u(x), being x the continuous analogue of the index i in the finite dimensional
case; dynamical variables are represented with functionals F : S(R) → R given by integrals F [u] =´
R f (u, ux, uxx, . . . ) dx and26 gradients Fu are replaced by functional derivatives of F , defined as

ˆ
R

δF [u]

δu(x)
v(x) dx := lim

ε→0

F [u + εv ]− F [u]

ε
=

d F [u + εv ]

d ε

∣∣∣∣
ε=0

, ∀ v ∈ S(R), (2.33)

where v ∈ S(R) has the role of a test function. In particular, the Hamiltonian is given by the integral

H [u] =

ˆ
R
H(u, ux, uxx, . . . ) dx,

begin H the Hamiltonian density function. From definition (2.33), we can deduce an explicit expression
for the functional derivative. Take e.g. the Hamiltonian functional H : assuming |ε| � 1, one finds

H
[
u + εv

]
= H [u] + ε

ˆ
R

(
Hu v +Huxvx +Huxxvxx + · · ·

)
dx.

Now observe that Huxvx = ∂x(Huxv)−v∂xHux and Huxxvxx = ∂x(Huxxvx−vxx∂xHuxx)+ v∂2
xHuxx : since

v ∈ S(R), all boundary terms goes to zero and we are left with

H
[
u + εv

]
− H [u]

ε
=

ˆ
R

(
Hu −

∂Hux

∂x
+
∂2Huxx

∂x2
− ∂3Huxxx

∂x3
+ · · ·

)
dx.

Finally, the fundamental lemma of variational calculus leads to expression [GeF963]

δH [u]

δu(x)
= Hu −

∂Hux

∂x
+
∂2Huxx

∂x2
− ∂3Huxxx

∂x3
+ · · · . (2.34)

Observe that if H = H(ux, uxx, uxxx, . . . ), i.e. if u = u(x) is cyclic, then equation (2.34) becomes

δH [ux]

δu(x)
= − ∂

∂x

(
Hux −

∂Huxx

∂x
+
∂2Huxxx

∂x2
− · · ·

)
= − ∂

∂x

δH [ux]

δux(x)
. (2.35)

In order to introduce the equations of the motion, we need S(R) to be a Poisson manifold; thus one
has to define a Poisson bracket {· , ·}S(R) : C∞(S(R))×2 → C∞(S(R)) s.t. (C∞(S(R)), {· , ·}S(R)) is an
algebra. The analogy with the finite dimensional case suggests the following definition

{
F ,G

}
S(R)

:=
〈
δu F , Jδu G

〉
S(R)

:=

ˆ
R

δF [u]

δu(x)
J(x)

δG [u]

δu(x)
dx, ∀F ,G ∈ C∞

(
S(R)

)
, (2.36)

where J is a (possibly singular) skew–adjoint linear operator. In what follows we will chose J = ∂x,
which is skew–adjoint with respect to the inner product of S(R), since ∀ u, v ∈ S(R) one has

〈
Ju, v

〉
S(R)

=

ˆ
R

ux(x)v(x) dx = u(x)v(x)
∣∣∣+∞
−∞
−
ˆ
R

u(x)vx(x) dx =
〈

u,−Jv
〉

S(R)
.

Choosing F [u] = u and G [u] = H [u] in (2.36), the HL equation of the motion becomes [Lax978]

∂u(x)

∂t
=
{

u,H [u]
}

S(R)
=

ˆ
R

δu(x)

δu(y)
J(y)

δH [u]

δu(y)
d y = J(x)

δH [u]

δu(x)
=⇒ ut = Jδu H , (2.37)

26We could in principle allow the t derivatives in f , but is unnecessary for the reasons to become clear shortly.
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which defines an infinite dimensional Hamiltonian system, referring to our previous definition. Note
that in (2.37) we have used the relation δf(x)

δf(y) = δ(x− y), where the δ on the r.h.s. is the Dirac delta.

Remark 2.7 – Equation (2.37) can be written in a form closely resembling the usual one, namely
ṗ = −Hq , q̇ = Hp. To do this, replace the standard derivatives with functional derivatives, so that

qt = δpH [q , p], pt = −δq H [q , p], (2.38)

for a pair
(

q(x, t), p(x, t)
)
of conjugated variables. Within this formulation the Poisson bracket has form

{
F ,G

}
S(R)

=

ˆ
R

(
δF [q , p]

δq(x)

δG [q , p]

δp(x)
−
δF [q , p]

δp(x)

δG [q , p]

δq(x)

)
dx, ∀F ,G ∈ C∞

(
S(R)

)
, (2.39)

and the canonical commutation relations between the conjugated variables become ∀x, y ∈ R{
q(x), q(y)

}
S(R)

= 0,
{

p(x), p(y)
}

S(R)
= 0,

{
q(x), p(y)

}
S(R)

= δ(x− y). (2.40)

Note that if q = q(x, t) is cyclic, then (from the equations (2.38), combined with (2.35), it follows that)
we may set p = qx and use (2.35) to recover the expression (2.36) from (2.39) [AbS981].

2.4.1 KdV first integrals and (bi–)Hamiltonian structure. We are now ready to explain the con-
nections between the KdV equation and the Hamiltonian formalism. In §2.2 we have obtained for the
transmission coefficient the relation τt(k; t) = 0, ∀ k ∈ R∗. Therefore, one may interpret {τ(k, t), k ∈ R∗}
as a set of infinitely many first integrals, provided that they are non–trivial and independent. Since we
wish to express these first integrals in functional form, set [MGK968, ZaF971]

ψ(x, k; t) = e−ıkx+
´+∞
x
T (y,k;t) d y, (2.41)

where T is a smooth function to be determined. Now consider the behavior of the wave function
ψ = ψ(x, k; t) as x→ −∞: equation (2.19) gives expression e−ıkxψ(x, k; t) ∼ τ(k; t) and then

τ(k; t) = lim
x→−∞

eıkxψ(x, k; t) = e
´
R T (y,k;t) d y, (2.42)

which holds for =k < 0, if one assumes k to be in the lower half plane, and then in the limit =k → 0,
because of real analyticity [Dun010]. Having cast first integrals in functional form, let’s find an equation
for T . Inserting the expression (2.41) in the Schrödinger equation (here rewritten with λ = k2) yields
Txψ + (T + ık)2ψ + uψ = −k2ψ, which holds ∀ψ ∈ L2(R); therefore we find [ZaF971]

Tx(x, k; t) + T 2(x, k; t) + 2ıkT (x, k; t) = −u(x, t). (2.43)

Note that equation (2.43) is a Riccati–type equation (see formula (2.9)) and one can search for solutions
of (2.43) of the form T (x, k; t) =

∑
n∈N(2ık)−nTn(x; t), leading to the recursion formula [AbS981]

T1(x; t) = −u(x; t), Tn+1(x; t) = ∂xTn(x; t) +

n−1∑
m=1

Tm(x; t)Tn−m(x; t), (2.44)

which can be solved for the few first terms, giving the following expressions:

T2 = −ux, T3 = −uxx + u2, T4 = −uxxx + 2
(
u2
)
x
,

T5 = −ux4 + 2
(
u2
)
xx

+
(
ux
)2

+ 2uuxx − 2u3.

Combining then the time dependence of τ = τ(k; t) given in (2.20) with expression (2.42), implies
d
d t

´
R Tn(x; t) dx = 0 so that In[u] ≡

´
R Tn(x; t) dx are first integrals for the KdV equation ∀n ∈ N.
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Remark 2.8 – From the above results it follows that the KdV equation admits a countable infinite set
of first integrals of the motion, as already noted in §2.1 following Miura’s approach [Miu968]; indeed,
the expressions obtained here for the conserved densities T1, T2, T3 coincide respectively (up to irrelevant
multiplicative factors) with the relations for w0, w1, w2 given in (2.8). Note also that not all the first in-
tegrals in the set {In}n∈N are non–trivial, e.g. I2[u] =

´
R T2(x; t) dx = −u

∣∣+∞
−∞ = 0, being u ∈ S(R) and

the same holds for I4. Actually, one can prove that all even terms I2n are trivially zero, since all the
expressions for T2n with n ∈ N have the form of an exact x–derivative [NMPZ84].

Therefore, we are left with odd first integrals of the KdV equation, given by the expression

In−1[u] ≡ 1

2

ˆ
R
T2n+1(u, ux, uxx, . . . ) dx, n ∈ N. (2.45)

The first of these is just the integral of u itself, whilst for the next one gets

I0[u] =
1

2

ˆ
R
u2 dx, I1[u] =

1

2

ˆ
R

(
u2
x − 2u3

)
dx.

These two first integrals are associated with the translational invariance of KdV and thus, via Noether’s
theorem, with the conservation of total momentum and energy, respectively. Now we can cast the
KdV equation in Hamiltonian form: introducing the Hamiltonian functional HKdV[u] = I1[u], with
Hamiltonian density given by HKdV(u, ux) = 1

2u
2
x − u3, the HL equation (2.37) becomes

ut =
∂

∂x

δHKdV

δu
=

∂

∂x

(
∂HKdV

∂u
− ∂

∂x

∂HKdV

∂ux

)
= −

(
3u2 + uxx

)
x
.

Thus the KdV is an infinite dimensional Hamiltonian system. Note that I0 commutes with HKdV, since{
I0,HKdV

}
S(R)

=

ˆ
R

δI0[u]

δu(x; t)

∂

∂x

δHKdV[u]

δu(x; t)
dx

δuI0[u]=u
======== −

ˆ
R
u
(
6uux + uxxx

)
dx = 0,

being u an S(R) function. Indeed, all the non–trivial first integrals in (2.45) commute with HKdV:{
In,HKdV

}
S(R)

=

ˆ
R

δIn[u]

δu(x; t)

∂u(x; t)

∂t
dx =

d In[u]

d t
= 0, ∀n ∈ N0.

With a bit of more work [NMPZ84] one can show also that {In, Im}S(R) = 0, ∀n,m ∈ N0.
Therefore, one may ask whether or not HKdV is also completely integrable in the Arnol’d–Liouville

sense. The answer is affermative, but rather involved and it won’t be discussed here in detail27; we
shall give just a clue to the main reasons behind it. First note that the existence of a countable infinite
set of first integrals in involution indeed suggests that the KdV system is completely integrable, but is
not sufficient for the infinite dimensional case since (roughly speaking) one doesn’t know ""how many”
functionals in involution are required to assure complete integrability [AbS981]. From another point of
view, one notes that expressions τ(k, t) = τ(k, 0) and ln[ρ(k, t)] = ln[ρ(k, 0)] + ı8k3t ∀ (t, k) ∈ R × R∗,
are formally equivalent with equations (2.32), suggesting that (ln ρ, τ) can be somehow regarded as
action–angle variables for HKdV, thereby identifying the KdV system as a completely integrable one in
a precise sense. Although (ln ρ, τ) are not themselves canonical, it has been proved in 1971 by Zakharov
& L. D. Faddeev (1934) and independently in 1975 by H. Flaschka (1945) & A. C. Newell (1941)
[FlN975], that certain functions of τ and ρ satisfy the Poisson commutation relations, namely(

P (k),Q (k)
)
≡
(
− k
π ln

[
1− |ρ(k)|2

]
, arg

[
ρ(k)

])
,

(
Pn,Qn

)
≡
(
− 2κ2

n, ln cn
)
,

for the unbounded and the discrete components of the spectrum of HKdV, respectively. Moreover, it
can be shown that HKdV = HKdV(P (k), {Pn}n=1,2,...,N ), which is the defining property of action–angle
variables. Thus the mapping u 7→

{
P (k),Q (k), {Pn,Qn}n=1,2,...,N

}
is canonical, meaning that the IST

is a canonical transformation for the KdV system to a set of action–angle variables.
27See e.g. M. J. Ablowitz, H. Segur – Solitons and the Inverse Scattering Transform, § 1.6.b, pgg. 58–67.
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Therefore, we can reassume the main points of the above arguments28 as follows:

• the time independence property of the transmission coefficients τ = τ(k, t) related to the Schrödinger
scattering problem, implies the existence of an infinite set {In}n∈N0

of conserved quantities;

• the IST is a canonical transformation for the KdV equation to a set of action–angle variables;

• the KdV is an infinite dimensional Hamiltonian system, with Hamilton functional given by HKdV[u] =
1
2

´
R(u2

x − 2u3) dx, completely integrable in the Arnol’d–Liouville sense.

The depicted scenario gives then a clue to understand the existence of multi–solitons solutions in the
KdV (and in general in every known IST–solvable NLE) equation. The complete integrability property
for the KdV system may be plausibly regarded as a reasons for the stability of its stationary solutions;
in fact, the relatively simple picture that emerges in physical variables (e.g. solitons with pairwise
interactions) is a direct consequence of the existence of a set of action–angle variables. In particular, no
stochastic motion can occur within an IST–solvable initial value problem29 [AbS981].

We end this section with one last property that is shared by most of the IST–solvable systems,
namely the so–called bi–Hamiltonian structure [FaT007]. Let’s therefore give the following

Definition 2.4 - A differential manifoldM over a field K is a bi–Poisson manifold iff it is endowed
with two Poisson brackets {· , ·}M, {· , ·}′M : C∞(M)×2 → C∞(M) s.t. the linear combination{

f, g
}(µ)

M :=
{
f, g
}′
M − µ

{
f, g
}
M, (2.46)

defines a Poisson bracket ∀µ ∈ K and ∀ f, g ∈ C∞(M); expression (2.46) defines a pencil of Poisson
brackets and is known as the compatibility condition between the two Poisson structures.

In particular, for the infinite dimensional case the compatibility condition (2.46) has the form{
F ,G

}(µ)

S(R)
=
〈
δu F , Jµδu G

〉
S(R)

:=
〈
δu F , (J′ − µJ)δu G

〉
S(R)

, ∀µ ∈ K, ∀F ,G ∈ C∞
(
S(R)

)
,

being J, J′ two (possibly singular) skew–adjoint linear operators; following the definition 2.4, the one
parameter family of linear operators {Jµ, µ ∈ K} is called a pencil of Poisson operators.

Suppose now to endow an Hamiltonian system with a bi–Poisson manifold as phase–space; this leads
to the next definition, here formulated for the infinite dimensional case.

Definition 2.5 - Let {J′ − µJ, µ ∈ R} be a real pencil of Poisson operators. A system of differential
equations is called bi–Hamiltonian if there exist two Hamilton functionals H0,H1 : S(R)→ R s.t.

ut = Jδu H0[u] = J′δu H1[u], u ∈ S(R). (2.47)

The KdV is a well–known example of a bi–Hamiltonian system [Mag978, FOR996]: the two forms
correspond respectively to the choices H1[u] = I1[u], J = ∂x and H0[u] = I0[u], J′ = −∂3

x − u∂x − ∂xu.
The bi–Hamiltonian formulation gives a very effective way to construct first integrals. Assuming that

J, J′ satisfy (2.46) and that J is non–degenerate30, one can define the recursion operator R := J′J−1

and invoke a fundamental result, proved by P. J. Olver, which states that if Rn(Jδu H0) lies in the
image of J ∀n ∈ N0, then there exists a set {Hn}n∈N0

of conserved functionals given recursively by

Jδu Hn[u] = Rn
(
Jδu H0[u]

)
, n ∈ N0, (2.48)

which are all in involution [Olv993]. For the KdV system RKdV = −∂2
x − 4u − 2ux∂

−1
x (where ∂−1

x

formally defines the x–integration) and all first integrals in (2.45) are recovered by (2.48).
28Note that the discussion in indeed quite general, since the same properties also holds in presence of a very large class

of NLEEs, from which the KdV is recovered as a particular case [AbS981].
29This doesn’t suggest that the problem has become trivial; the inverse method is highly non–trivial and, in general,

one isn’t even guaranteed that its solution are unique and well–behaved. In fact, there are cases of IST–solvable systems
(e.g. the ShG) in which singular solutions may develop, provided they don’t violate any conservation laws .

30A differential operator J is degenerate iff there exists a non–zero differential operator J̃ s.t. J ◦ J̃ = 0 identically.
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3 Lax pairs and AKNS method
3.1 Lax pairs for the KdV equation and for other integrable NLEEs. As briefly described, the

IST was first developed and applied to the KdV equation by GGKM in 1968; however it was unclear
if it would apply to other (physically significant) NLEE [AbS981]. In 1972, V. E. Zakharov and A. B.
Shabat showed that indeed the method was not a fluke [ZaS972]; using a technique first introduced
by Lax [Lax968], they showed that the NLS equation is related to a linear scattering problem and
succeeded in solving this way the associated initial value problem. Shortly after, using these ideas M.
Wadaty introduced a method for solving the mKdV equation [Wad972] and in 1973 the team of M. J.
Ablowitz, D. J. Kaup, A. C. Newell and H. Segur (hereafter abbreviated AKNS) did the same
for the Sine–Gordon equation [AKNS73], developing a general method to obtain, given a suitable linear
eigenvalue problem, NLEEs solvable by IST which also keep the spectrum invariant.

Let’s start with considering the essential ideas behind Lax’s approach. For this purpose, consider
the system of equations (2.21): let L and M be two L2(R)–differential operator respectively related to
the spectral problem and to the associated time evolution equation. Lax observed that the property of
time–invariance of the spectrum σ(L ) could be shown to be equivalent to the statement that L (0) and
L (t) (both self–adjoint in this case) with t ∈ R+ are unitarily–equivalent, i.e. there exists a continuous
uniparametric family of unitary operators {U(t), t ∈ R+

0 } such that

L (t) = U(t)L (0)U−1(t), ∀ t ∈ R+
0 . (3.1)

The proof is straightforward: let φ = φ(x, 0;λ) be an eigenfunction of L (0) with eigenvalue λ; evolution
under the action of U(t) gives φ(x, t;λ) ≡ U(t)φ(x, 0;λ) and it trivially follows that

L (t)φ(x, t;λ) = U(t)L (0)
[
U−1(t)U(t)

]
φ(x, 0;λ)

U∗U=1=UU∗
========== λ

[
U(t)φ(x, 0;λ)

]
= λφ(x, t;λ).

Taking now the time derivative of both sides of equation (3.1), one gets

Lt(t)U(t) + L (t)Ut(t) = Ut(t)L (0)
M≡UtU∗−−−−−−→ Lt(t) =

[
M (t),L (t)

]
, (3.2)

known as Lax equation; operators L ,M are then called a Lax pair. Note that
(
M , L2(R)

)
is skew–

adjoint, i.e. M ∗ = −M , which follows differentiating equation UU∗ = 1 with respect to t.
Actually, the skew–adjointness is also necessary to preserve unitarity, as shown in the next [Kar998]

Lemma 3.1 - Let {U(t), t ∈ R+
0 } be a one–parameter family of linear operators s.t. Ut = M U, for some

skew–adjoint one–parameter family {M (t), t ∈ R+
0 }. Then if U(0) is unitary, also U(t) is ∀ t ∈ R+

0 .

Proof. Let v1,v2 ∈ V , V a vector space over R; define wi(t) ≡ U(t)vi, ∀ i = 1, 2, ∀ t ∈ R+
0 . Then〈

w1,w2t

〉
V

=
〈
w1,Mw2

〉
V

=
〈
M ∗w1,w2

〉
V

= −
〈
w1t,w2

〉
V

=⇒ ∂t
〈
w1,w2

〉
V

= 0,

having observed that wit = Mwi; note that 〈 ·, · 〉V : V × V → R is a scalar product over V . Thus〈
w1(t),w2(t)

〉
V

=
〈

U(t)v1,U(t)v2

〉
V

=
〈

U(0)v1,U(0)v2

〉
V

=
〈
v1,v2

〉
V
,

having used unitarity of U(0). Then U(t) is an isometry ∀ t ∈ R+
0 and U(t)U∗(t) = 1 = U∗(t)U(t) ∀ t ∈

R+
0 , i.e. U(t) is unitary ∀ t ∈ R+

0 .

Lax showed that if equation (3.2) holds, then the spectrum σ(L ) is invariant in time.

Theorem 3.1 - Let
{(

L (t), H
)
, t ∈ R+

0

}
be a one–parameter family of self–adjoint operators on the

Hilbert H. Suppose eigenvalues and eigenfunctions of equation L φ = λφ continuously differentiable
with respect to t; if ∃ {M (t), t ∈ R+

0 } s.t. Lax equation holds, then λt = 0. Also if λ is simple then
φt = (M +C)φ for some continuous function C = C(t) and if (M +C) is skew–adjoint then ∂t‖φ‖H = 0.
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Proof. Differentiating L φ = λφ yields Ltφ+ L φt = λtφ+ λφt; from (3.1) and ML φ = λMφ, one gets

λtφ1H =
(
λ1H −L

)(
Mφ− φt1H

)
. (3.3)

Now take the inner product of both sides with φ and use self–adjointness property of L to get

λt
∥∥φ∥∥2

H
=
〈(
λ1H−L

)(
Mφ−φt1H

)
, φ
〉
H

=
〈(

Mφ−φt1H
)
,
(
λ∗1H−L ∗

)〉
H

= 0 =⇒ λt = 0.

Now return to equation (3.3): if λ is simple, since Mφ − φt belongs to the same eigenspace, we must
have φt = (M + C)φ, for some C = C(t). Then it follows that

∂t
∥∥φ∥∥2

H
=
〈
φ, (M + C)φ

〉
H

+
〈
(M + C)φ, φ

〉
H

and hence if M +C is skew–adjoint, then ‖φ‖2H is independent from the time variable t.

For the KdV equation we have already shown in §2.2 that C(t) = 0 ∀ t ∈ R+
0 and that operators

LKdV,MKdV defined in equation (2.21) constitute a Lax pair for the KdV equation. Indeed one can
easily compute that the Lax equation for LKdV and MKdV gives exactly the KdV equation (1.16).

Thus in general we try to associate to an evolution equation of the form ut = D(u) a self–adjoint
operator L and a skew–adjoint operator M that satisfy the Lax equation. By the above remarks,
this condition guarantees that the spectrum of L is a set of integrals for ut = D(u) and that the last
one is solvable by IST. The difficulties with this method are that one must ""guess” a suitable L and
then find the associated M in order to satisfy equation (3.2). On the contrary, an advantage is that
once L is given, there is a somewhat systematic (but complicated) way to find a sequence of evolution
equations for which L constitutes an isospectral flow [Kar998]. To show how this method applies take
the Schrödinger operator L = −∂xx−u(x, t); stationarity yields equation Lt = −ut. Thus the problem
is reduced in finding a skew–adjoint operator M s.t. [M ,L ] = −ut. If we try, e.g., M0 = ∂x we
get isospectral flow for the evolution equation ut + ux = 0 (since [M0,L ] = ux); trying instead the
skew–adjoint operator M1 = a∂xxx + b∂x + ∂xb, with a, b to be determined, one gets[

M1,L
]

= 3aux∂xx + 3auxx∂x + 2bux − 4bx∂xx − 4bxx∂x − bxxx.

Choosing then a = 4, b = 3u(x, t) one recovers the KdV equation and expression31 (2.21) for MKdV.

Remark 3.1 – Note that the expression for MKdV obtained by following the Lax formalism is equivalent
to the form used by GGKM in (2.14) [GGKM67], i.e. the associated time evolution equations

ψt = M
(Lax)
KdV ψ = 4ψxxx − 6uψx − 3uxψ, ψt = M

(GGKM)
KdV ψ = uxψ + 2

(
2λ− u

)
ψx,

are equivalent. To prove this, invoke the spectral problem: differentiation of both sides with respect to x
gives ψxxx+λψx+uxψ+uψx = 0. Now isolate the term uxψ and substitute it into the GGKM expression
to get ψt = −ψxxx+3λψx−3uψx; doing the same for λψx leads to equation ψt = −4ψxxx−6uψx−3uxψ.
Note that implication Lax→ GGKM simply follows by inverting the previous argument.

As written at the beginning, other NLEE where found to be IST–solvable by means of the Lax
formalism. In particular, in 1972 Zakharov and Shabat found a Lax pair for a slightly generalized
version of the NLS equation (1.23) with the factor α replaced by 2

1−p2 , for some p 6= ±1 [ZaS972]. The
Lax pair they discovered consisted in the following pair of 2× 2 differential operators

Lp–NLS = ı

(
1 + p 0

0 1− p

)
∂

∂x
+

(
0 u∗

u 0

)
, Mp–NLS = ıp12

∂2

∂x2
+

 |u|2
1+p ıu∗x

−ıux − |u|
2

1−p

 . (3.4)

31The constant C = C(t) in expression (2.21) must be set to zero, since MKdV is already skew–adjoint.
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With these choices, the Lax equation (3.2) is satisfied and equals the ZS–form of the NLS [Kar998].

Remark 3.2 – Note that if p = 0 one recovers the NLS equation (1.23) with α = 2. In this case it’s
easy to see that LNLS is self–adjoint and MNLS is skew–adjoint, although is not true in general for p 6= 0.

In their paper, ZS applied the IST method to a general 2×2 eigenvalue problem obtained applying to
equation Lp–NLSφ = λφ, where φ = (φ1, φ2)ᵀ is a 2× 1 column vector and φ1, φ2 are smooth functions
with respect to spatial and time variables, the following change of variables [ZaS972]

φ1 =
√

1− pe
−ı
(

λ
1−p2

)
x
ϕ2, φ2 =

√
1 + pe

−ı
(

λ
1−p2

)
x
ϕ1, q ≡ ıu√

1− p2
, ζ ≡

λp
1− p2

.

Performing these changes of variables leads to the eigenvalue problem [Kar998]{
ϕ1x + ıζϕ1 = q(x, t)ϕ2,

ϕ2x − ıζϕ2 = −q∗(x, t)ϕ1.

Replacing now q , −q∗ with the arbitrary (still smooth and slowly decreasing) functions v = v(x, t),
u = u(x, t) respectively, we finally obtain the so–called Zakharov–Shabat equations [AbS981]{

ϕ1x + ıζϕ1 = u(x, t)ϕ2,

ϕ2x − ıζϕ2 = v(x, t)ϕ1,

written equivalently in matrix form as

ϕx =

(
ϕ1x

ϕ2x

)
=

(
−ıζ u(x, t)
v(x, t) ıζ

)(
ϕ1

ϕ2

)
≡ Xϕ. (3.5)

Remark 3.3 – Note that functions u, v play in equation (3.5) the same role that the potential u = u(x, t)
has in the Schrödinger equation. Also, if we choose v(x, t) = −1 in equations (3.5) and let ϕ2 ≡ ψ, then
after some simplifications, the Zakharov–Shabat system of equations reduces to ψxx+ζ2ψ+u(x, t)ψ = 0,
which is nothing but the linear Schrödinger equation we used in §2.2 to solve the KdV equation.

3.2 The AKNS formalism and applications to the ZS spectral problem. We’ll now follow an
alternative method introduced by AKNS [AKNS74] in 1974 and inspired by the matrix form of the ZS
equations. The procedure can be formulated as follows: consider the following two linear equations

ϕx = Xϕ, (3.6)
ϕt = T ϕ, (3.7)

where ϕ 6= 0 is an n–dimensional vector and X , T are n × n matrices. Cross differentiating equations
(3.6), (3.7) and imposing the compatibility condition ϕxt = ϕtx, leads to

(
Xt − Tx + [X , T ]

)
ϕ = 0 which

holds ∀ϕ 6= 0. Therefore, we are left with the following equation

Xt − Tx +
[
X , T

]
= O, (3.8)

where O is the null n × n matrix. Equation (3.8) is equivalent to Lax equation and it’s a matter of
convention to refer to (3.6), (3.7) as to the principal and the auxiliary spectral problem, respectively.

It turns out that, given X , there is a simple deductive procedure to find a T s.t. equation (3.8)
contains a NLEE; of course, in order for (3.8) to be effective, the operator X should have a parameter
which plays the role of an eigenvalue, say ζ, obeying condition ζt = 0. Although the method is very
general, we’ll concentrate on the case of a 2× 2 eigenvalue problem32. Then consider the ZS equations

32For a more general treatment see e.g. M. J. Ablowitz, H. Segur – Solitons and the Inverse Scattering Transform.
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(3.5) and associate to them the most general form of a linear (but local) time evolution equation for the
2× 1 column vector ϕ of functions ϕ1, ϕ2, i.e. [AbS981](

ϕ1x

ϕ2x

)
=

(
−ıζ u(x, t)

v(x, t) ıζ

)(
ϕ1

ϕ2

)
,

(
ϕ1t

ϕ2t

)
=

(
A B
C D

)(
ϕ1

ϕ2

)
, (3.9)

where A,B, C and D are scalar functions independent of ϕ, but can depend on u, v and their derivatives.
To simplify notations, let’s rewrite equations (3.9) in terms of the Pauli σ3 matrix as

ϕx =
(

Q − ıζσ3

)
ϕ, ϕt = T ϕ,

being Q a 2 × 2 matrix with entries Q12 = u, Q21 = v and zeros on the main diagonal. Note that if
v = −1, we get the linear Schrödinger equation (where ζ2 plays the role of λ) as pointed out in §3.1 and
if v = ±u∗ (or v = ±u, if u is real) one can also get some physically significant NLEE.

Since we desire to derive NLEEs for u and v that leave the spectrum of equations (3.9) invariant
under their flow, we make use of condition ζt = 0 and proceed in cross–differentiating equations (3.9);
forcing the compatibility condition ϕxt = ϕtx ∀ϕ 6= 0 yields (after some calculations) equation

Qt − Tx =
[
T ,Q

]
− ıζ

[
T , σ3

]
,

explicitly (
−Ax ut − Bx

vt − Cx −Dx

)
=

(
Bv − Cu

(
A − D

)
u

−
(

A − D
)

v −
(

Bv − Cu
))+ 2ıζ

(
0 B
−C 0

)
.

Note that Ax = Cu − Bv = −Dx thus, without loss of generality, we can take A = −D in what follows.
With this position, we restrict to the system of three differential equations with unknowns A,B and C

Ax = Cu − Bv ,
ut = Bx + 2Au + 2ıζB,
vt = Cx − 2Av − 2ıζC .

(3.10)

We want to solve the system (3.10) so that equations (3.6), (3.7) are compatible. Doing this, we’ll see
that still another condition must to be satisfied, which turns out to be an evolution equation. Various
methods are feasible to solve system (3.10): here we’re going to adopt an expansion procedure [AbS981].

Since ζ is a free parameter (it might be small), we try for a polynomial solution to (3.10) in powers
of ζ. Let’s start with a first order polynomial, i.e. suppose that A = A0 + ζA1, B = B0 + ζB1 and
C = C0 + ζC1 are solutions of the set of equations (3.10). This yields the system

(
A0x − C0u + B0v

)
+
(

A1x − C1u + B1v
)
ζ = 0,

ut =
(

B0x + 2A0u
)

+
(

B1x + 2A1u + 2ıB0

)
ζ + 2ıB1ζ

2,

vt =
(

C0x − 2A0v
)

+
(

C1x − 2vA1 − 2ıC0

)
ζ − 2ıC1ζ

2.

Now equate coefficients belonging to same powers of ζ. For ζ2 one finds B1 = 0 = C1, whilst ζ gives
A1x = C1u − B1v ,
B1x = −2ıB0 − 2A1u,
C1x = 2ıC0 + 2A1v ,

B1=0=C1−−−−−−→


A1(x, t) = a1(t),

B0(x, t) = ıa1(t)u(x, t),

C0(x, t) = ıa1(t)v(x, t);

finally, equating ζ0–coefficients and substituting what previously obtained, we get
A0x = C0u − B0v ,

ut = B0x + 2A0u,
vt = C0x − 2A0v ,

A0x=ıa1[v,u]=0−−−−−−−−−→
A0(x,t)=a0(t)

{
ut(x, t) = ıa1(t)ux(x, t) + 2a0(t)u(x, t),

vt(x, t) = ıa1(t)vx(x, t)− 2a0(t)v(x, t).
(3.11)
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Therefore first order polynomial solutions of (3.10) doesn’t yield interesting evolution equations for
""potentials” u and v , since the ones we’ve found are both linear in their arguments.

Let’s try second order polynomials, i.e. suppose that A = A0 + ζA1 + ζ2A2, B = B0 + ζB1 + ζ2B2 and
C = C0 + ζC1 + ζ2C2 are solutions to (3.10). Substitution yields the following system

(
A0x − C0u + B0v

)
+
(

A1x − C1u + B1v
)
ζ +

(
A2x − C2u + B2v

)
ζ2 = 0,

ut =
(

B0x + 2uA0

)
+
(

B1x + 2uA1 + 2ıB0

)
ζ +

(
B2x + 2uA2 + 2ıB1

)
ζ2 + 2ıB2ζ

3,

vt =
(

C0x − 2vA0

)
+
(

C1x − 2vA1 − 2ıC0

)
ζ +

(
C2x − 2vA2 − 2ıC1

)
ζ2 − 2ıC2ζ

3.

Equating ζ3–coefficients immediately gives B2 = 0 = C2, whilst from ζ2 and ζ one gets respectively

ζ2 :

A2x = C2u − B2v ,
B2x = −2uA2 − 2ıB1,
C2x = 2vA2 + 2ıC1,

B2=0=C2−−−−−−→

A2(x, t) = a2(t),
B2(x, t) = ıa2(t)u(x, t),
C2(x, t) = ıa2(t)v(x, t).

ζ :

A1x = C1u − B1v ,
B1x = −2uA1 − 2ıB0,
C1x = 2vA1 + 2ıC0,

B1=ıa2u−−−−−→
C1=ıa2v

A1(x, t) = a1(t),
B0(x, t) = ıa1(t)u(x, t)− 1

2 a2(t)ux(x, t),
C0(x, t) = ıa1(t)v(x, t) + 1

2 a2(t)vx(x, t).

Note that ζ3,ζ2–coefficients for second order polynomials gives formally the same results obtained from
ζ2,ζ–coefficients for first order polynomials. Finally, equating ζ0–coefficients yields

A0x = C0u − B0v ,
ut = B0x + 2uA0,

vt = C0x − 2vA0,

A0x=ıa1[v,u]+
a2
2 (uv)x=

a2
2 (uv)x−−−−−−−−−−−−−−−−−−−→

A0=
a2
2 uv+a0

{
ut = ıa1ux − a2

2 uxx + a2u2v + 2a0u,

vt = ıa1vx +
a2

2
vxx − a2v2u − 2a0v .

(3.12)

Therefore, following the AKNS formalism we have obtained a general family of NLEEs associated to
the ZS problem. In particular, taking for simplicity a1(t) = 0 = a0(t) (i.e. eliminating from equations
(3.12) the LEEs (3.11) obtained from first order polynomials), the coupled NLEEs (3.12) get the form{

ut − a2u2v + 1
2 a2uxx = 0,

vt + a2uv2 − 1
2 a2vxx = 0,

(3.13)

which are reminiscent of NLS (1.23). Indeed the latter equation results if we let v = εu∗ with ε = ±1:{
ut − εa2u|u|2 + 1

2 a2uxx = 0,

u∗t + εa2u∗|u|2 − 1
2 a2u∗xx = 0.

(3.14)

Equations (3.14) are compatible iif a∗2 = −a2, i.e. iff a2 = ıα with α ∈ R; it’s a common choice to set
α = 2. Thus system (3.14) reduces to the attractive (+ sign) or repulsive (− sign) NLS equation

ıut = uxx ± 2u
∣∣u∣∣2. (3.15)

Note that for the attractive NLS equation soliton solutions can be found, but no soliton solutions exists
in the repulsive one for rapidly decaying potentials [AbS981].

In summary, considering the ZS spectral problem ϕx = (Q−ıζσ3)ϕ and the associated time–evolution
equation ϕt = T ϕ, the compatibility condition is given by equations (3.8). Searching for second order
polynomial solutions, we’ve shown that condition (3.10) holds iff potentials u, v , with v = ±u∗, satisfy
a NLS equation (3.15) and that, with this choice, the operator T has the form

TNLS =

(
ıε|u|2 + 2ıζ2 −ıux − 2ζu
ıεu∗x − 2εζu∗ −ıε|u|2 − 2ıζ2

)
.

Of course one could guess if there are other interesting NLEEs for higher order polynomials. Indeed
this is the case for third order polynomials, which is the last example we’re going to treat in this
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paragraph. Thus assume that A = A0 + ζA1 + ζ2A2 + ζ3A3 and analogue expressions for B and C are
solutions of system (3.10). Therefore, one finds the following results [AbS981]

A = a3ζ
3 + a2ζ

2 + 1
2 (a3uv + a1)ζ + 1

2 a2uv − ı
4 a3(uvx − uxv) + a0,

B = ıa3uζ2 +
(
ıa2u − 1

2 a3ux
)
ζ +

(
ıa1u + ı

2 a3u2v − 1
2 a2ux − ı

4 a3uxx
)
,

C = ıa3vζ2 +
(
ıa2v + 1

2 a3vx
)
ζ +

(
ıa1v + ı

2 a3v2u + 1
2 a2vx − ı

4 a3vxx
)
,

(3.16)

and the nonlinear evolution equations obtained from the compatibility condition (3.10) are{
ut + ı

4 a3

(
uxxx − 6uvux

)
+ 1

2 a2

(
uxx − 2u2v

)
− ıa1ux − 2a0u = 0,

vt + ı
4 a3

(
vxxx − 6uvvx

)
− 1

2 a2

(
vxx − 2v2u

)
− ıa1vx + 2a0v = 0.

(3.17)

Evolution equations of physical interest are obtained from (3.17) as special cases; in particular, we find(
a0 = a1 = a2 = 0

a3 = −4ı

)
=⇒

K [u] = 0 if v = −1,

M [u] = 0 if v = ∓u∗;(
a0 = a1 = a3 = 0

a2 = 2ı, v = ∓u∗

)
=⇒ ıut = uxx ± u|u|2 (NLS).

Until now we have considered only polynomial expansions of A,B and C corresponding to positive
powers of ζ. However, we may also find interesting NLEEs corresponding to expansion in inverse powers
of ζ (or both) [AbS981]. Considerer, as an example, the following choice

A(x, t) =
a(x, t)

ζ
, B(x, t) =

b(x, t)

ζ
, C(x, t) =

c(x, t)

ζ
.

Substituting in the compatibility condition (3.10) and equating then ζ0, ζ−1–coefficients yields

ζ0 :

 ax = cu − bv ,
ut = 2ıb,
vt = −2ıc,

ζ−1 :

{
bx = −2au,

cx = 2av ,

b(x,t)=− ı
2 ut(x,t)−−−−−−−−−−−→

c(x,t)= ı
2 vt(x,t)


utx = −4ıau,
vtx = −4ıav ,

ax = ı
2

(
uv
)
t
.

(3.18)

System (3.18) has other important NLEEs as special cases; well–known examples are(
a(x, t) = ı

4 cos
[
w(x, t)

]
v(x, t) = −u (x, t) = 1

2 wx(x, t)

)
=⇒ wxt(x, t) = sin

[
w(x, t)

]
(SG);(

a(x, t) = ı
4 cosh

[
w(x, t)

]
u(x, t) = v (x, t) = 1

2 wx(x, t)

)
=⇒ wxt(x, t) = sinh

[
w(x, t)

]
(ShG).

Note that the presence of the factor 1/2 in the choices made for u, v in both above cases, is inserted in
order to satisfy the third equation in system (3.18), i.e. equation ax = ı

2 (uv)t.
Indeed many other (somehow less famous) NLEEs can be derived by taking combinations of previous

procedures or different expansions from above; of course, all these procedures gives exactly the same
results as does Lax approach (3.2), but are simpler because of their algebraic nature [AbS981].
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4 The classical Bäcklund Transformation (BT)

The previous sections were mainly devoted to introduce the basics of Soliton Theory. In particular,
we have underlined the importance of the IST method and its connection with multi–solitons solutions
of NLEEs, though stressing its limits and the difficulties related to the inverse problem. Furthermore,
we have emphasized that we still don’t have a definite criterion to characterize IST–solvable NLEEs,
meaning that we still ignore if any of the common characteristics encountered so far (i.e. multi–solitons
solutions, Arnol’d–Liouville integrability, (bi–)Hamiltonian structure, Lax pairs) is both necessary and
sufficient for a system to be IST–solvable. In this section we’re going to discuss a technique that is
generally believed to be a sufficient condition for IST in (1 + 1)–dimensions, that is the existence of a
Bäcklund Transform (BT). As we shall see, if this method holds then one can deduce without quadratures
the multi–solitons solutions for the NLEEs under scrutiny.

The BT has its origins in a contest apparently far from Soliton Theory, namely in differential ge-
ometry. It was discovered in 1875 by A. V. Bäcklund (1845–1922) while studying some particular
transformations between surfaces with constant negative total curvature, often referred as pseudospher-
ical surfaces [RoS002]; some years later, it was shown by L. Bianchi (1856–1928) that this particular
transformation was associated to an elegant invariance of the sine–Gordon equation33 [Bia885, Bia879].
To introduce BT, consider a suitable system of coordinates (u, v) ∈ R2, parametrizing a surface S imbed-
ded in R3. The line element of S is given by the first fundamental quadratic form d s2 = gµν duµ d vν

for µ, ν = 1, 2, being gµν = gνµ the symmetric metric tensor associated to S [Eis947]. For surfaces of
constant negative total curvature, the coordinates can be chosen s.t. g11 = g22 = ρ2 and g21 = ρ2 cosω,
where ρ ∈ R∗ is related to the total curvature K via the relation K = −ρ−2 ∈ R−. Therefore, the line
element of a pseudospherical surfaces with total curvature K may be written as

d s2 = − 1
K

(
du2 + 2 cosω dud v + d v2

)
,

where ω(u, v) ∈ [0, 2π) is the angle between two asymptotic lines and satisfies the well–known Gauss-
Codazzi–Mainardi equations. Invoking the Gauss’ theorema egregium, the latter equations simply reduce
to the sine–Gordon equation (on the light–cone) ωuv = −K sinω [RoS002]; therefore, each solution
ω = ω(u, v) will corresponds to a pseudospherical surface with curvature K = −ρ−2. Well known
solutions are illustrated in Figure 7 and in Figure 8 below [McL994].

Figure 7: Pseudosphere obtained as surface of revolution of the tractrix (upper left), Dini’s surface or twisted
pseudosphere (upper center), Kink surface (upper right), hyperboloid of one sheet (lower left), breather surface
(lower center) and parametric breather (lower right); from R. Palais’ Virtual Math Museum.

33Which was introduced in 1862 by the engineer E. Bour (1832–1866), still in the contest of differential geometry.
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Figure 8: Two–solitons (left), breather–soliton (center) and three–solitons (right); from Virtual Math Museum.

Now note that the SG equation is invariant under the scaling (Lie point symmetry) u′ = βu, v′ =
β−1v with β ∈ R∗, so each solution ω = ω(u, v) generates a one–parameter class of solutions ω′(u′, v′) =
ω(βu, β−1v). It was the quest for additional techniques for generating such surfaces that led Bäcklund
to introduce the transformation bearing nowadays his name: he founded that if ω0 is a solution of the
SG, then a new solution ω1 can be obtained by means of the following relations [RoS002, Lam976]:

Bβ :


∂

∂u

(
ω1 − ω0

2

)
=
ρ

β
sin

(
ω1 + ω0

2

)
,

∂

∂v

(
ω1 + ω0

2

)
=

1

ρβ
sin

(
ω1 − ω0

2

)
,

(4.1)

which represent the standard form of theBäcklund transform (hereafter indicated as Bβ) for the Sine–
Gordon equation34. The parameter β ∈ R∗ is called the BT parameter. Thus Bβ defines a mapping
between pseudospherical surfaces (or, equivalently, SG solutions) which preserves the scalar curvature;
in particular, if Bβ is a correspondence between solutions of the same equation (which is of course the
case for the SG), then Bβ is commonly termed an auto–Bäcklund transformation (aBT).

Remark 4.1 – The BT wouldn’t be useful if a first solution ω0 could not be obtained; fortunately,
the so–called "seed vacuum" solution ω0 = 0 provides a basis for constructing further solutions. As an
example, let’s calculate the second non–trivial SG–solution: setting ω0 ≡ 0 in (4.1) yields{

ω1u = 2β
ρ sinω1,

ω1v = 2
βρ sinω1,

´
d x
sin x =ln|tan x

2 |+cost
−−−−−−−−−−−−−−→

{
ln
∣∣tan ω1

4

∣∣ = β
ρu+ c(u),

ln
∣∣tan ω1

4

∣∣ = 1
βρv + c̃(v).

The last two expression implies that c(u) = c̃(v) ≡ c, leading to the one–soliton35 SG–solution

ω1(u, v) = 4 arctan
(
e
β
ρ u+ 1

βρ v+c
)
. (4.2)

Analytic expressions for multi–solitons solutions which encapsulate their nonlinear interaction may be
obtained by a purely algebraic procedure. This is the consequence of an elegant theorem proved in 1892
by L. Bianchi and derived from the a–BT Bβ , known nowadays as the Bianchi’s Permutability Theorem.

34Since we’re not going to show how these equations are obtained [RoS002], let’s simply verify that indeed ω0, ω1 satisfy
the SG equation. Cross differentiation of equations (4.1) and the compatibility conditions ∂uvωi = ∂vuωi yield(

ω1−ω0
2

)
uv

= β
ρ

cos
(
ω1+ω0

2

)(
ω1+ω0

2

)
v

= 1
ρ2

cos
(
ω1+ω0

2

)
sin
(
ω1−ω0

2

)
,(

ω1+ω0
2

)
vu

= β
ρ

cos
(
ω1−ω0

2

)(
ω1−ω0

2

)
u

= 1
ρ2

cos
(
ω1−ω0

2

)
sin
(
ω1+ω0

2

)
,

sub−−−−→
add

ω0uv = 1
ρ2

sinω0,

ω1uv = 1
ρ2

sinω1.

35Actually, it should be noted that (in light of the identity sin[2 tan−1(ex+y )] = sech(x + y)) it is the quantities

ω1u = 2β
ρ
sech

(
β
ρ
u+ 1

βρ
v + c

)
, ω1v = 2

βρ
sech

(
β
ρ
u+ 1

βρ
v + c

)
,

which have the characteristic hump shape associated with a soliton solution of a NLEE [RoS002].
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4.1 Bianchi’s Permutability Theorem. Suppose that ω0 is a seed solution of the SG equation and
let ω1, ω2 be the BT of ω0 obtained respectively via relations ω1(u, v) ≡ Bβ1 [ω0](u, v) and ω2(u, v) ≡
Bβ2

[ω0](u, v), being β1β2 ∈ R∗; therefore, recalling the expression (4.2), one has

ωi(u, v) = 4 arctan
(
eαi
)
, αi ≡

βi
ρ
u+

1

βiρ
v + ci, i = 1, 2.

Now define ω12 := Bβ2 [ω1] and ω21 := Bβ1 [ω2]; the situa-
tion is schematically represented with the non–commutative
Bianchi diagram on the left [RoS002]. It’s natural to ask if
there are any conditions under which this Bianchi diagram be-
comes commutative, i.e. under what circumstances the identity

Bβ1
Bβ2

= Bβ2
Bβ1

(4.3)

holds. To investigate this matter, let us consider the u and v–components of the BTs for the non–
commutative Bianchi diagram, respectively given by expressions

ω1u = ω0u +
2β1

ρ
sin

(
ω1 + ω0

2

)
,

ω12u = ω1u +
2β2

ρ
sin

(
ω12 + ω1

2

)
,

ω2u = ω0u +
2β2

ρ
sin

(
ω2 + ω0

2

)
,

ω21u = ω2u +
2β1

ρ
sin

(
ω21 + ω2

2

)
.

ω1v = −ω0u +
2β1

ρ
sin

(
ω1 − ω0

2

)
,

ω12v = −ω1u +
2β2

ρ
sin

(
ω12 − ω1

2

)
,

ω2v = −ω0u +
2β2

ρ
sin

(
ω2 − ω0

2

)
,

ω21v = −ω2u +
2β1

ρ
sin

(
ω21 − ω2

2

)
.

Inserting the first and third equations in the second and forth ones and setting then ω12 = ω21 ≡ Ω, one
obtains respectively from the u and v components, the following relations

β1

[
sin

(
ω1 + ω0

2

)
− sin

(
Ω + ω2

2

)]
= β2

[
sin

(
ω2 + ω0

2

)
− sin

(
Ω + ω1

2

)]
,

β1

[
sin

(
Ω− ω1

2

)
+ sin

(
ω2 − ω0

2

)]
= β2

[
sin

(
Ω− ω2

2

)
+ sin

(
ω1 − ω0

2

)]
.

Now subtract the first equation from the second one, invoke
the addition and subtraction formulas for the sine function and
the identity tan(α−β2 ) = sinα−cos β

sinα+cos β and rearrange properly the
terms of the equation; one finally arrives to the formula

tan

(
Ω− ω0

4

)
=
β2 + β1

β2 − β1
tan

(
ω2 − ω1

4

)
, (4.4)

which is the main result of the Bianchi’s permutability theorem
[Bia923]. Therefore, if the condition (4.3) holds, a new SG’s
solution Ω can be constructed from equation (4.4), for a given
seed ω0, and the Bianchi diagram becomes commutative, as indicated in the figure on the right.

Remark 4.2 – Since the permutability theorem (4.4) allows to construct new solutions for the SG
equation from older ones, it’s usually referred in the literature as the SG–nonlinear superposition
principle, in the sense that if ω0 = ω0(u, v) is a seed solution of the SG equation and Ω is obtained via
the BT with the relation Ω = Bβ1

[
Bβ2

[ω0]
]
, then Ω = Ω(u, v) is also a solution of the SG equation.
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Figure 9: Three–folded Bianchi lattice [RoS002].

The commutative property now allows to construct a
Bianchi lattice, obtained by iterated applications of the
permutability theorem (4.4) (see Figure 9). Therefore
N–solitons solutions of the SG equation may be gener-
ated by purely algebraic procedures, each corresponding
to a nonlinear superposition of N single soliton solu-
tions, with Bäcklund parameters β1, β2, . . . , βN . As an
example, let’s calculate the two–solitons solution for the
SG. The expression follows immediately from (4.4) with
ω1, ω2 given by formula (4.2): thus we have

ω
(SG)
2–sol = 4 arctan

[
β2 + β1

β2 − β1
tan

(
ω2 − ω1

4

)]
.

Invoking therefore the trigonometric subtraction for-
mula tan(α− β) = tanα−tan β

1+tanα tan β and rearranging the exponential terms in the expression, one can finally
put the two–solitons solution in the following form:

ω
(SG)
2–sol(u, v) = 4 arctan

 (β2 − β1) sinh
[
u
2ρ (β2 − β1) + v

2ρ (β−1
2 − β−1

1 ) + c
]

(β2 − β1) cosh
[
u
2 ρ(β2 + β1) + v

2ρ (β−1
2 + β−1

1 ) + c′
]
 , (4.5)

where c ≡ c2 − c1 and c′ ≡ c2 + c1. Note that solutions (4.2) and (4.5) represent the angles between
two asymptotic lines of different pseudospherical surfaces, whose expressions may be obtained after
substituting the equations (4.2), (4.5) in the first fundamental quadratic form (now associated to a
surface of revolution) and integrating the expression obtained [RoS002]. Then one finds that the surface
corresponding to the one–soliton solution (4.2) is given by the Beltrami’s pseudosphere (see Figure 7)
and the one associated to the two–solitons solution (4.5) is the so–called two–soliton surface depicted
in the image on the left of Figure 8. It should be also emphasized that other interesting solutions may
be obtained by starting from different seed solutions ω0 and by searching for periodic solutions, known
as breathers. For example, the so–called two–soliton breathers may be obtained from solution (4.5)
using complex Bäcklund parameters β1,2 = z ± ıw and introducing a proper coordinate systems36; the
surface associate to the two–solitons breather solution is depicted in Figure 8.

4.2 BT in other setting and the connection with IST. So far we’ve considered the BT for the SG
equation; we wish now to generalize the argument to other nonlinear systems. Before starting, however,
it should be stressed that since there is no unique definition of BT, there might be different approaches
to the general problem; in this section we’ll mainly follow the argumentations proposed by Ablowitz
and Segur in the third chapter of their monograph37 [AbS981]. Let’s start with the following

Definition 4.1 - Let D[u] = 0 and E [v] = 0 be two PDEs. A (set of ) relation(s) of the form

L(u, v, ux, vx, ut, vt, . . . ;x, t) = 0

is said to map E into D if every (local) solution of E [u] = 0 uniquely defines a (local) solution of D[v] = 0.

Note that in this paragraph u and v are smooth functions of the independent variables (x, t) ∈ R2.
We have already encounter such relations: indeed the Miura transform u = −vx − v2 (see §2.1) is

a map of mKdV into KdV, i.e. K[u] = −(∂x + 2v)M[v] and the same is true for the Hopf–Cole trans-
form u ≡ −2ν vxv (see §1.2), which maps solutions of the heat equation into solutions of the Burgers’ one.

36See e.g. C. Rogers, W. K. Schief – Bäcklund and Darboux transformations, §1.4, pgg. 31–41.
37Another approach, based on a different BT definition, can be found in the work of R. L. Anderson, N. J. Ibragimov

(1979) for the Lie–Backlund transformations [AnI979] and in the successive papers of N. J. Ibragimov, A. B. Shabat
[IbS979] and A. S. Fokas [Fok980]; another one, based on local jet–bundles, was given by F. A. E. Pirani [Pir979].
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Let’s therefore give the Ablowitz–Segur definition for the BT (AS–BT) [AbS981].

Definition 4.2 - A set of relations involving {x, t;u(x, t)}, {x , t ; v(x , t)} and the derivatives of u and
v is a Bäcklund transform between D[u;x, t] = 0 and E [v; x , t ] = 0 if:

� the BT is integrable38 for v (respectively for u) iff D[u] = 0 (E [v] = 0);

� given u (respectively v) s.t. D[u] = 0 (E [v] = 0), the BT defines v (u) to within a finite set of
constants and E [v] = 0 (D[v] = 0).

Besides the BT for the SG, that we’ve already discussed, there exist other well known transformations
in the literature that satisfy the AS–BT: e.g. in the theory of complex variables, the Cauchy–Riemann
conditions (giving a necessary and sufficient condition for a function to be complex differentiable)

ux = vy, uy = −vx,

identify an auto–BT for the Laplace equation, in fact one has respectively that uxx + uyy = 0 and
vxx + vyy = 0. Then, given v satisfying the Laplace equation, one has that the CR–conditions defines a
new solution u of the same equation, to within a constant u0 = u(x0, y0). Another interesting example
is the scattering problem for the KdV, given by the set of equations (2.12) and (2.13), namely

ψxx + (ζ2 + u)ψ = 0, ψt = uxψ + 2(2ζ2 − u)ψ.

One immediately sees that these relations are also a BT between the KdV equation and

ψt + ψxxx − 6ζ2ψx − 3
ψxψxx
ψ

= 0, (4.6)

obtained by solving the Schrödinger equation for u and substituting into the associated time–evolution
equation; recall that the KdV follows from the compatibility condition ψxxt = ψtxx. Note that u is
uniquely determined from ψ (for ψ 6= 0), whereas ψ is only determined by u to within two arbitrary
constants corresponding to ψ and ψx at (x0, t0) [AbS981].

Remark 4.3 – There is a distinction between a BT and a mapping. Once v is given, a mapping uniquely
defines u without specifying anything about either D[u] = 0 or E [v] = 0, whilst a BT need not define u
uniquely but does specify both D[u] = 0 and E [v] = 0. Also, a BT can be constructed from a mapping
by associating an appropriate evolution equation. For example, the Schrödinger equation is a mapping
from ψ to u (in a domain where ψ 6= 0), but alone does not identifies a BT; another example is the
Miura transform (2.2), which is a map of mKdV into KdV, but not a BT; however, the couple

vx = −(u− v2), vt = 6v2vx − vxxx, (4.7)

is indeed a BT between the KdV and the mKdV equations.

We come now to the main point of the section: what do the BT has to do with IST? We have already
seen that the KdV scattering problem is also a BT between KdV and equation (4.6). Now let’s consider
the following problem: once the BT for a certain NLEE is given, can we recover the associated scattering
problem? As a test case, consider the BT for the SG: following a procedure proposed originally by M.
Wadati, H. Sanuki & K. Konno [WSK975] and later independently discovered by R. K. Dodd &
R. K. Bullough [DoB976], set (for notation convenience) ω ≡ ω0 and ω̃ ≡ ω1 and introduce the new
variable γ := tan( ω̃+ω

4 ). Under this transformation, Bβ becomes

Bβ :


γx =

1

2
(1 + γ2)ωx +

β

2ρ
(1 + γ2) sin

(
ω̃ + ω

2

)
=

1

2
(1 + γ2)ωx +

βγ

ρ
,

γt =
1

2βρ
(1 + γ2) sin

(
ω̃ − ω

2

)
=

γ

βρ
cosω − 1

2βρ
(1− γ2) sinω,

(4.8)

38Here the sentence "vx = f(x, t) and vt = g(x, t) are integrable" must be read as "they’re compatible".
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where we have used the identities (1 + γ2) sin
(
ω̃−ω

2

)
= 2γ, (1 + γ2) sin

(
ω̃−ω

2

)
= γ cosω− (1− γ2) sinω,

which follows from the duplication formulas of the sine and cosine functions. The system (4.8) is a set
of Riccati–type equations which can be linearized by applying the transformation γ = ϕ2/ϕ1, defined in
a domain of R2 where ϕ1 6= 0 and ϕ2 6= 0 (the last condition holds since γ = 0 isn’t a solution of system
(4.8)). With this change of variable, the system (4.8) gets the formϕ1

(
ϕ2x − 1

2ωxϕ1 − β
2ρϕ2

)
= ϕ2

(
ϕ1x + 1

2ωxϕ2 + β
2ρϕ1

)
,

ϕ1

(
ϕ2t − 1

2βρϕ2 cosω + 1
2βρϕ1 sinω

)
= ϕ2

(
ϕ1t + 1

2βρϕ1 cosω + 1
2βρϕ2 sinω

)
.

Invoking now the conditions ϕ1, ϕ2 6= 0 and setting to zero each coefficient in the above system, gives(
ϕ1x

ϕ2x

)
=

1

2

(
−βρ −ωx
ωx

β
ρ

)(
ϕ1

ϕ2

)
,

(
ϕ1t

ϕ2t

)
=

1

2βρ

(
− cosω − sinω
− sinω cosω

)(
ϕ1

ϕ2

)
. (4.9)

which correspond exactly to the ZS spectral problem for the SG equation (see relations (3.18), §3.2)
with ρ = 1 and β = 2ıζ. Therefore we can conclude that the linearized aBT for the SG equation
(with curvature K = −1) is equivalent to the ZS spectral problem for the SG; note that the Bäcklund
parameter of the BT is related to the spectral parameter of the IST via the relation β = 2ıζ.

Recalling now the role that the ZS spectral problem had in the contest of the IST method, the results
of the following theorem should not came as a great surprise [AbS981].

Theorem 4.1 - Consider the ZS spectral problem given by the set of equations (3.6), (3.7) and let
u ≡ (u, v) satisfy the evolution equations D[u] = 0, each one compatible with (3.6), (3.7). Then for
every ζ ∈ R∗ the ZS spectral problem is a BT between D[u] = 0 and some E [ϕ; ζ] = 0, where E [ϕ; ζ] = 0
is a pair of PDEs for ϕ ≡ (ϕ1, ϕ2) involving the spectral parameter ζ, but not u.

Proof. See M. J. Ablowitz, H. Segur – Solitons and the Inverse ..., Ch. 3, pgg. 156 –157.

We won’t prove the theorem above, since we wish to discuss a general procedure to derive BTs for
IST–solvable NLEEs starting from the associated inverse scattering problems. The approach we’ll follow
was originally proposed by H.–H. Chen in 1974 [Che974]. Consider the ZS spectral problem{

ϕ1x = −ıζϕ1 + u(x, t)ϕ2,

ϕ2x = v(x, t)ϕ1 + ıζϕ2,

{
ϕ1t = Aϕ1 + Bϕ2,

ϕ2t = Cϕ1 − Aϕ2;

recall that the system is integrable (in the sense of AKNS) iff A,B and C satisfy the equations (3.10),
obtained by forcing the compatibility condition ϕxt = ϕtx. We have seen that finite expansions of
A,B, C in terms of ζ and appropriate choices of the potentials u, v reduce the ZS spectral problem to
NLEEs of interest like the KdV, mKdV, SG, ShG or NLS (see §3.2). Now manipulate the ZS systems
in the following way: multiply both members of the first equations for both systems by ϕ2/ϕ

2
2 and both

member of the second equations by ϕ1/ϕ
2
2, to get the systems of Riccati equations

ϕ1xϕ2

ϕ2
2

= −ıζ ϕ1

ϕ2
+ u(x, t),

ϕ2xϕ1

ϕ2
2

= v(x, t)
ϕ2

1

ϕ2
2

+ ıζ
ϕ1

ϕ2
,


ϕ1tϕ2

ϕ2
2

= A
ϕ1

ϕ2
+ B,

ϕ2tϕ1

ϕ2
2

= C
ϕ2

1

ϕ2
2

− A
ϕ1

ϕ2
,

respectively. Subtracting now the second equations from the first ones, we get the Chen system{
γx = −2ıζγ + u− vγ2,

γt = 2Aγ + B − Cγ2,
(4.10)

having defined the linearizing variable γ := ϕ1/ϕ2 in a proper domain of R2 where ϕ1, ϕ2 6= 0.
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Therefore we have to specify the class to which the NLEE of interest belongs. Let’s start with the one
related to the KdV, for which v = −1 (see §3.2). Setting β ≡ ıζ, the Chen system becomes

I :

{
γx = −2βγ + u+ γ2,

γt = 2Aγ + B − Cγ2,

where the expressions for A,B and C follow from equations (3.16):

AKdV = 4β3 + 2βu− ux, BKdV = −4β2u+ 2βux − 2u2 − uxx, CKdV = 4β2 + 2u.

Now, solving the first equation of the Chen system for u gives u = γx + 2βγ− γ2; inserting this into the
previous expressions for AKdV,BKdV and CKdV yields

AKdV = 4β3 + 4β2γ − 2βγ2 − γxx + 2γγx,

BKdV = −8β2γ − 4β2γ2 − 8βγγx + 4γ2γx + 8βγ3 − 2γ4 − γxxx + 2γγxx,

CKdV = 4β2 + 2γx + 4βγ − 2γ2.

Finally, substituting these expressions into the second equation of the Chen system (4.10) we get

γt − 6γ2γx + 12βγγx + γxxx = 0, (4.11)

which represents a mixed KdV–mKdV equation and is indeed equivalent (up to a change of variables)
to equation (4.6). In particular, if β = 0 then equation (4.11) reduces to the pure mKdV and the Chen
system (4.10) reproduces the BT between KdV and mKdV given in (4.7).

Now it comes the main aspect of the Chen’s approach. Note that equation (4.11) is invariant under
the parity–transformations (γ, β) 7→ (−γ,−β), which means that if u is a solution of the KdV, then
another KdV–solution ũ exists, s.t. −γx = −2βγ+ ũ+γ2, −γt = −2Ãγ+ B̃− C̃γ2, where Ã ≡ A(u′,−β),
B̃ ≡ B(u′,−β) and C̃ ≡ C(u′,−β) [Che974]. Therefore, one is leaved with the two solutions (u, ũ) of the
KdV equation belonging to the two Chen systems

u :

{
γx = −2βγ + u+ γ2,

γt = 2Aγ + B − Cγ2,
ũ :

{
γx = 2βγ − ũ− γ2,

γt = 2Ãγ − B̃ + C̃γ2.
(4.12)

Adding and subtracting the equations belonging to the same derivatives, yields finally{
u+ ũ = 2(2β − γ)γ,

u− ũ = 2γx,

{
γ2(C + C̃)− 2γ(A − Ã)− (B − B̃) = 0,

2γt + γ2(C − C̃)− 2γ(A + Ã)− (B − B̃) = 0.

To complete the task, let’s make the substitution u = ωx: therefore one has γ = 1
2 (ω − ω̃) + β (having

fixed the constant of integration with β for historical reasons, clarified below) and then

u+ ũ

2
= 2βγ − γ2 γ= 1

2 (ω−ω̃)+β
−−−−−−−−−→

(
ω + ω̃

2

)
x

= β2 −
(
ω − ω̃

2

)2

, (4.13)

which is the x–component of the aBT of the KdV, originally found by H. D. Wahlquist & F. B.
Estabrook in 1973 [WaE973]. For the t–component one can insert γ in (4.11) to get [WSK975](

ω − ω̃
2

)
t

=
(
ωx + ω̃x

)2 − 2

(
ω − ω̃

2

)(
ω − ω̃

2

)
xx

, (4.14)

or equivalently into the second equation for the Chen system39 [Che974, AbS981]. The set of equations
(4.13), (4.14) is an aBT for the KdV equation with Bäcklund parameter β = ıζ.

39Note that other forms for the KdV–aBT might be obtained by following different ways during the calculations [Che974].
We want to stress here that this is not wrong, in fact the BT for a given NLEE is not necessary unique.
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Consider now a different class, namely the one associated to the SG and the mKdV equations; in
§3.2 we’ve seen that these NLEEs are recovered from the ZS spectral problem by choosing v = −u,
having supposed u real. Setting β ≡ 2ıζ, the Chen system (4.10) becomes

II :

{
γx = −βγ + u(1 + γ2),

γt = 2Aγ + B − Cγ2.

In order to work with the system above, introduce the convenient re–parametrization γ = tan w
2 , being

w = w(x, t) an S(R2) function. The following relations follow immediately:

γx,t
1 + γ2

= ∂x,t arctan(γ) =
1

2
wx,t,

γ

1 + γ2
=

1

2
sinw,

1

1 + γ2
= cos2

(
1
2w
)
,

γ2

1 + γ2
= sin2

(
1
2w
)
.

Therefore, dividing both equations of the Chen system II by 1 + γ2, one finds

II :

{
u = 1

2

(
wx + β sinw

)
,

1
2wt = A sinw + B cos2

(
1
2w
)
− C sin2

(
1
2w
)
.

(4.15)

Let’s specialize to particular cases. We start from the mKdV: recalling formulas (3.17), (3.18), one has

AmKdV = 1
2β

3 + 1
4β

3 sin2 w + 1
2β

2wx sinw + 1
2βw

2
x,

BmKdV = − 1
2β

3 sinw
(
1 + 1

2 sin2 w
)
− 1

2β
2wx

(
3
2 sin2 w − cosw + 1

)
+

− 1
4βw

2
x sinw + 1

2βwx
(
1− cosw

)
− 1

4w
3
x − 1

2wxxx,

CmKdV = 1
2β

3 sinw
(
1 + 1

2 sin2 w
)

+ 1
2β

2wx
(

3
2 sin2 w + cosw + 1

)
+

+ 1
4βw

2
x sinw + 1

2βwx
(
1 + cosw

)
+ 1

4w
3
x + 1

2wxxx;

substitution of the previous expressions in the second equation for the Chen system II (4.15) gives

wt + 1
2w

3
x + wxxx + 3

2β
2wx sin2 w = 0. (4.16)

Equation (4.16) is invariant under the transform (γ, β) 7→ (±γ,±β). Thus considering, e.g. the invari-
ance (γ, β) 7→ (−γ,−β), one has two mKdV–solutions u, ũ, belonging to two Chen systems of the form
(4.15): adding and subtracting relative expressions yields u+ ũ = β sinw and u− ũ = wx, respectively.
Setting u = ωx

2 we obtain w = 1
2 (ω − ω̃), having fixed (for simplicity) to zero che integration constant.

Substituting the previous relations in u+ ũ = β sinw gives immediately the x–component of the MkDv–
aBT, that is 1

2 (ω − ω̃)x = β sin
[

1
2 (ω − ω̃)

]
. The t–component is obtained by inserting w = 1

2 (ω − ω̃) in
equation (4.16). Ultimately, one finds the following expressions for the mKdV–aBT [Che974](

ω ± ω̃
2

)
x

= β sin

(
ω ∓ ω̃

2

)
,(

ω ± ω̃
2

)
t

= −2βω2
x sin

(
ω ∓ ω̃

2

)
∓ 2β ωxx cos

(
ω − ω̃

2

)
∓ β3 sin

(
ω ± ω̃

2

)
± 2β2ωx.

(4.17)

Consider now the SG equation: in this case we have ASG = − 1
2β cosω, BSG = CSG = β−1ut. It turns

to be convenient to set u = −ωx2 at this stage s.t. ASG = − 1
2β (1− 4u2

t )
1/2, being cosω = (1− sin2 ω)1/2

= (1−ω2
xt)

1/2, where we have assumed that ω satisfies the SG equation); note that the expression for u
is given by the first equation in (4.15), i.e. ut = 1

2 (wxt+βwt cosw). Now express functions ASG and BSG
in terms of w = 2 arctan(γ) and insert the results in the second equation of the Chen’s system (4.15):
using well–known trigonometric identities, we finally obtain

wxt = sinw
√

1− β2w2
t . (4.18)
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Equation (4.18) is (γ, β) 7→ (±γ,±β)–invariant; thus, as for mKdV, there exist two SG–solutions (u, ũ),
with ũ associated (say) to the (γ, β) 7→ (−γ,−β) invariance, s.t. u + ũ = β sinw and u − ũ = wx.
Having chosen u ≡ −ωx2 , one has w = 1

2 (ω̃ − ω) and then 1
2 (ω + ω̃)x = β sin

[
1
2 (ω − ω̃)

]
. Insert now

w = 1
2 (ω̃ − ω) in the second equation of (4.15): since BSG = CSG one has

1
2wt = ASG sinw + BSG cosw,

where we have used the identity cos2(w/2) − sin2(w/2) = cosw. Invoking now the original expressions
ASG = − 1

2β cosω and BSG = − 1
2β sinω, one finds 1

2 (ω− ω̃)t = 1
β sin(w+ω) = 1

β sin
[

1
2 (ω̃+ω)

]
. We have

therefore recovered the original expressions for the SG–aBT, namely(
ω ± ω̃

2

)
x

= β sin

(
ω ∓ ω̃

2

)
,

(
ω ∓ ω̃

2

)
t

=
1

β
sin

(
ω ± ω̃

2

)
, (4.19)

where the equations with different signs follow from the (γ, β) 7→ (±γ,∓β) invariances [Che974].
Proceeding in the same fashion as before, one can treats other classes of NLEEs and deduce the

associated aBTs: e.g. the ShG–aBT might be obtained by studying the class v = u and the NLS–aBT
(or, more generally, aBTs associated to NLS–type equations) from the class v = −u∗.

4.2.1 The connection with multi–solitons solutions. The auto–Bäcklund transforms for the KdV,
mKdV and SG equations can be deduced by following a different approach, suggested by K. Konno &
M. Wadati [KoW975]. The main idea is to construct a transform (γ, u) 7→ (γ̃, ũ) that leaves invariant
the system (4.10). For the class I (i.e. v = −1) the couple (γ̃, ũ) can be chosen s.t.

γ′ ≡ −γ + 2β, ũ ≡ u+ 2γ̃x, (4.20)

where β ≡ −ıζ. It is easy to verify that (γ̃, ũ) satisfy the Chen system I. If we chose u ≡ ωx, ũ ≡ ω̃x in
the second transformation γ̃x = 1

2 (ũ− u), we get the relation γ̃ ≡ 1
2 (ω̃ − ω)− β, where the integration

constant has been chosen s.t. γ = 1
2 (ω̃ − ω) + β. Inserting this relation into I, one finds{

γx = −2βγ + u+ γ2,

γt = 2Aγ + B − Cγ2,

γ= 1
2 (ω̃−ω)+β

−−−−−−−−−→

{(
ω + ω′

)
x

= 2β2 − 1
2

(
ω − ω′

)2
,(

ω − ω′
)
t

= 2A
[
(ω − ω′) + 2β

]
+ 2B − C

[
(ω − ω′) + 2β

]2
,

which are to the KdV–aBT. For the class II (i.e. v = −u), one has the transforms [KoW975]

γ̃ =
1

γ
, ũ = u− 2∂x arctan(γ). (4.21)

Now distinguish between the mKdV and the SG equations: choose (ũ, u) ≡ ( ω̃2 ,
ω
2 ) for the former and

(ũ, u) ≡ (− ω̃2 ,−
ω
2 ) for the latter. From the second transformation in (4.21), one therefore obtains

mKdV : γ = tan

(
ω − ω̃

4

)
, SG : γ = tan

(
ω̃ − ω

4

)
,

respectively. Inserting these expressions in II, yields ultimately the aBTs for the mKdV and the SG.
Indeed it might be thought that the transformations (4.20), (4.21) have been chosen on purpose,

just to recover the correct expressions for the aBTs. Actually, those transforms emerge from a deep
argumentation, developed independently by three groups, namely M. Wadati, H. Sanuki & K Konno
[WSK975], P. Deift & E. Trubowitz [DeT979] and F. Calogero [Cal978], which is at the heart
of the connection between the aBTs of NLEEs and multi–solitons solutions. The common aspect here
is that the main effect of a BT on a given solution of a NLEE is to add or (regarding the inverse BT)
subtract one soliton. We have already encountered a similar property in the beginning of §4.1, when
we have derived, starting with the seed solution ω0 ≡ 0, the one–soliton (4.2) and two–solitons (4.5)
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solutions of the SG equation from the associated aBT. However, a general theorem can be proved stating
that if the original solution u0 = u0(x, t) of a given NLEE satisfies the condition

ˆ
R
|u0(x, t)|

(
1 + |x|

)
dx <∞, (4.22)

then the new solution u1 ≡ Bβ [u0] satisfies condition (4.22) and its spectrum (thinking of u1 as a
potential in the associated spectral problem) differs from that of u0 by exactly one discrete eigenvalue
[AbS981]. We’re not going to prove this result in general; however, following the work of M. Wadati et
al. [WSK975], we are going to show how this happens for the KdV equation. We will be then in the
position to justify the relations chosen at the beginning for the transforms (4.20), (4.21).

Let’s therefore start from the KdV scattering problem, that is the Schrödinger equation40 ψxx +
[ζ2 + u(x)]ψ = 0; let ψ0 = ψ0(x) an eigenfunction with eigenvalue ζ0 and ψ(x, ζ) an arbitrary solution.
Consider now the so–called Crum Transform (CT) here defined:

ψ(x, ζ)
Cζ0−−→ ψ̃(x, ζ) ≡

W
{
ψ(x, ζ);ψ0(x)

}
(ζ2 − ζ2

0 )ψ0(x)
, (4.23)

where W{ψ,ψ0} := ψxψ0 − ψψ0x is the Wronskian between functions ψ, ψ0. A transformation similar
to the one in (4.23) was introduced in 1955 by M. M. Crum to change a Sturm–Liouville operator
defined over a finite interval into an operator having one less eigenvalue than the original one [Cru955].
Recall now two useful properties of the Schrödinger equation, summarized in the following

Theorem 4.2 - The function (4.23) is a solution of the Schrödinger equation with potential

ũ(x) ≡ u(x) + F [u(x)], F [u(x)] ≡ 2
[

ln
(
ψ0(x)

)]
xx
, (4.24)

∀ ζ 6= ζ0. Also the transformation inverse to (4.23) is given by

ψ(x, ζ) =
W
{
ψ̃(x, ζ); ψ̃01(x)

}
ψ̃01(x)

, ψ̃01(x) ≡ ψ−1
0 (x). (4.25)

Proof. See M. Wadati et al., Inverse Method, Bäcklund Transform and ..., pg. 426 [WSK975].

It turns out that the CT is closely related to the KdV–aBT. To show this, let u(N) and u(N+1) be
the N and (N + 1)–solitons solution, respectively. We know from §2.2 that KdV–soliton solutions are
associated to bound states of the Schrödinger equation. Consider therefore the system

{
ψi ∈ L2(R) : ∂2

xψi + [ζ2
i + u(N)]ψi = 0, ψi(x)

|x|→+∞−−−−−→ 0
}
i=1,2,...,N

,{
φi ∈ L2(R) : ∂2

xφi + [ζ2
i + u(N+1)]φi = 0, φi(x)

|x|→+∞−−−−−→ 0
}
i=1,2,...,N,N+1

.
(4.26)

Without loss of generality, reorder the eigenvalues {ζ0, ζ1, . . . , ζN , ζN+1} s.t. ζ2
N+1 > ζ2

N > · · · > ζ2
1 >

ζ2
0 > 0. Now add to the system (4.26) a new eigenfunction ψN+1 satisfying the equation

∂xxψN+1 +
[
ζ2
N+1 + u(N)

]
ψN+1 = 0; (4.27)

note that this is not a bounded solution. As shown in Th. 4.2, the CT exists between two Schrödinger
equations with same eigenvalues and potentials given by relation (4.24). Thus, identifying ζ2

0 ≡ ζ2
N+1,

ũ ≡ u(N), u ≡ u(N+1) and ψ0(x) ≡ φN+1(x) = 1/ψN+1(x), we find from the relations (4.24), (4.25)

u(N+1)(x) = u(N)(x) + 2
[

lnψN+1(x)
]
xx
. (4.28)

Equations (4.27) and (4.28) are the same that Wahlquist and Estabrook had derived from the KdV–BT
[WaE973] and gives exactly the transforms (4.20) and (4.21) for the classes I and II [WSK975].

40Note that the time dependence is irrelevant in this argument and therefore it is suppressed.
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5 The gauge–Bäcklund Transform (gBT)

In this section we are going to discuss an alternative procedure to obtain BTs for NLEEs, starting
from the associate spectral problem, by means of the so–called gauge transforms. We will also show
that within this approach, once the BTs for the given NLEEs are have been found, it’s possible to
straightforwardly prove the corresponding permutability theorem, just as the Bianchi’s one for the SG
equation. The presentation given here is based on the works of M. Boiti & G. Z. Tu [BoT982] and of
M. Boiti, F. Pempinelli & G. Z. Tu [BPT983]; see also the other references given therein.

To introduce the argument, consider the following generalization for the ZS–spectral problem{
ϕx = Xϕ,
ϕt = T ϕ,

X ≡ X
[
Q (x, t); ζ

]
, T ≡ T

[
Q (x, t); ζ

]
, (5.1)

where ϕ,X and T are complex–valued N × N matrix functions of x, t, ζ and X , T are rational in the
spectral parameter ζ; assume also that the components of the matrix Q = Q (x, t) are S(R) functions.
Note that if X = Q − ıζσ3 (see equation (3.9)) then the ZS–spectral problem is recovered. Also recall
that the compatibility condition ϕxt = ϕtx furnishes the so–called Lax representation in the AKNS
formalism for the NLEE on is looking for (as shown in §3.2 for the ZS–system).

Let’s now follow a different approach. Let G = G [Q (x, t); ζ] be the matrix representation (over the
space where the components of ϕ are defined, usually L2(R)) of an infinitesimal gauge transformation g
of ϕ such that ϕ 7→ ϕ′ := Gϕ. This formulation must be consistent with the AKNS’ one, thus G must
be a complex–valued N ×N matrix function of x, t, ζ rational in ζ, defined as

G
[
Q (x, t); ζ

]
= 1N + T

[
Q (x, t); ζ

]
d t. (5.2)

Note that equation (5.2) and the time–evolution equation in (5.1) are equivalent, since ϕ + ϕt d t =
ϕ′ =

[
1N + T d t

]
ϕ which implies ϕt = T ϕ. Under the action of the gauge transform, the principal

spectral problem in (5.1) transforms simultaneously as ϕ′x = X ′ϕ′, where X ′ satisfies the equation

Gx = X ′G − GX , (5.3)

which follows by noting that the identity (Gx + GX )ϕ = (Gϕ)x = ϕ′x = X ′ϕ′ = (X ′G)ϕ holds ∀ϕ 6= 0.
Now assume that X ′ is the infinitesimal time translation of X under the action of the gauge, i.e.

X ′ = X
[
Q ′(x, t), ζ

]
≡ X + Xt d t, Q ′(x, t) ≡ Q (x, t+ d t). (5.4)

Inserting the relation (5.4) in equation (5.3), by means of (5.2) one has Tx d t =
(

X +Xt d t
)(
1N +T d t

)
−(

1N + T d t
)

X =
(

Xt + [X , T ]
)

d t+O(d t2); neglecting higher order infinitesimals, we find

Xt − Tx + [X , T ] = O.

Thus we have recovered equation (3.10) by means of an infinitesimal gauge–transform of ϕ. Note that,
since the Lax equation (3.2) involves isospectral flows (see §3.1), the equations in the system (3.8) are
often called in the literature as isospectral deformation equations41 for the matrix potential Q .

5.1 Gauge–Bäcklund transforms and the permutability theorem. Having in mind the foregoing
arguments, consider another infinitesimal gauge b of ϕ s.t. ϕ 7→ ϕ̃ := Bϕ, being B the N ×N matrix
representative of b over the space where ϕ is defined. Assume then b to be a more general transform
than g, in the sense that B = B[Q (x, t), Q̃ (x, t); ζ], where the matrix potentials Q and Q̃ are solutions
of (possibly different) isospectral deformation equations. Under the action of b the principal spectral
problem transforms as ϕ̃x = X̃ ϕ̃, where X̃ = X

(
Q̃ (x, t); ζ

)
satisfies the equation

Bx = X̃ B − BX , (5.5)
41Therefore, we’ll say that in the AKNS representation for the Lax formalism, the NLEEs can be obtain as isospectral

deformation equations of the linear spectral problem ϕx = Xϕ [BoT982].
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formally equivalent to equation (5.3). Since we wish to deduce the BTs from the infinitesimal gauge
transforms, let’s consider the double transform ϕ̃′ = GBϕ̃, obtained by applying first b and then g on ϕ
(note that the index in GB reminds the order of the transforms). The global effect of g is an infinitesimal
time–translation of Q̃ = Q̃ (x, t); therefore, in accordance with the condition (5.2), we must have

GB = 1N + TB d t, (5.6)

where TB is a complex–valued N × N matrix representative, related to the b–transformed auxiliary
spectral problem, that is ϕ̃t = TBϕ̃. Therefore ϕ̃′ = ϕ̃ + ϕ̃t d t and so (B + TB B d t)ϕ = GB Bϕ = ϕ̃′ =
[B + (Bt + BT ) d t]ϕ, which holds ∀ϕ 6= 0; then, we find the equation

Bt = TB B − BT . (5.7)

Remark 5.1 – The infinitesimal gauges transforms b and g commutes, in the sense that(
GB B − B ′G

)
ϕ = O, ∀ϕ 6= 0. (5.8)

In fact, having in mind that B ′ = B + Bt d t and recalling equations (5.2), (5.6), one finds

GB B − B ′G =
(
1N + TB d t

)
B −

(
B + Bt d t

)(
1N + T d t

)
=
(

TB B − BT − Bt
)

d t+O(d t2);

invoking equation (5.7) and neglecting higher order infinitesimals, we get the desired result.
We are therefore in the position to introduce the following

Definition 5.1 - If the matrix B = B[Q , Q̃ ; ζ] satisfies the system of equations (5.6), (5.7), i.e.{
Bx = X̃ B − BX ,
Bt = TB B − BT ,

(5.9)

then the transform ϕ 7→ ϕ̃′ := GB Bϕ is called a gauge–Bäcklund transform (gBT).

Now we desire to determine the equation satisfied by the matrix potential Q = Q (x, t). In light
of the b–transformed principal spectral problem, differentiate with respect to x the gBT to get ϕ̃′x =
(GBx+GB X̃ )ϕ̃. Then, note that g and b are both gauge transforms, thus g◦b is also a gauge transform and
under its action the principal spectral problem stays formally unchanged, i.e. ϕ̃′x = X̃ ′ϕ̃′. Substituting
this in the previous expression for ϕ̃′x, we find that X̃ ′ satisfies the relation

GBx = X̃ ′GB − GB X̃ , (5.10)

which is formally equivalent to equation (5.3). Therefore, in analogy with our previous argumentations,
we can assume X̃ ′ = X [Q̃ ′(x, t); ζ] to be the infinitesimal time–translation of X̃ under the action of g,
s.t. X̃ ′ = X̃ + X̃t d t. Inserting this relation and the consistency condition (5.6) in equation (5.10), one
finds TBx d t = (X̃ + X̃t d t)(1N + TB d t)− (1N + TB d t)X̃ = (X̃t + [X , TB ]) d t+O(d t2), which ultimately
tells us that the matrix potential Q̃ = Q̃ (x, t) satisfies the Lax equation

X̃t − TBx + [X̃ , TB ] = O.

As a particular case, assume TB = T̃ ≡ T [Q̃ ; ζ]: then equation (5.7) is replaced with Bt = T̃ B−BT and
the matrix potential Q̃ satisfies the same Lax equation having Q as a solution, i.e. X̃t− T̃x + [X̃ , T̃ ] = O.
Since this will be the working case in what follows, let’s remark it with the definition below.

Definition 5.2 - A gBT ϕ 7→ ϕ̃′ := GB Bϕ is called an auto–gauge–Bäcklund Transform (hereafter
abbreviated as agBT) if the matrix B = B[Q , Q̃ ; ζ] satisfies the system{

Bx = X̃ B − BX ,

Bt = T̃ B − BT .
(5.11)
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Remark 5.2 – Forcing the compatibility condition Bxt = Btx in the system (5.11) yields{
Bxt = (X̃t + X̃ T̃ )B − X̃ BT − T̃ BX + B(TX − Xt),

Btx = (T̃x − T̃ X̃ )B − T̃ BX − X̃ BT + B(XT − Tx),

Bxt=Btx−−−−−→
(

X̃t−T̃x+
[
X̃ , T̃

])
B = B

(
Xt−Tx+

[
X , T

])
.

Therefore, if B = B[Q , Q̃ ; ζ] satisfies the system (5.11) and if the compatibility condition holds, then the
matrix potentials Q , Q̃ satisfy the same Lax equation.

The system (5.11) gives us an expression for the BT of the NLEE under scrutiny. Actually, it should
be noted that the x–component in (5.11) depends just on X and therefore it holds for all the NLEEs
belonging the same hierarchy associated to the spectral problem (5.1), whilst the expression for the
t–component varies case by case. We had already encountered this property in §4.2, where we saw that
the x–component of the aBT was the same for each NLEE belonging to the same class42. However,
comparing with the Chen’s approach or the Wadati–Sanuki–Konno’s one, a substantial simplification
occurs within this framework: the expression for the t–component in system (5.11) is fixed by its
asymptotics, e.g. as x→ −∞. To show this property, consider the spectral problem

φx := X̃ ′φ. (5.12)

Recalling relations (5.3), (5.10) it is easy to verify that φ ≡ (G̃B − B ′G)ϕ is a solution of (5.12):

φx =
[
G̃xB + G̃Bx − B ′xG − B ′Gx + (G̃B − B ′G)X

]
ϕ = X̃ ′

(
G̃B − B ′G

)
ϕ = X̃ ′φ.

Then it follows that the gauges g and b commute iff their asymptotics commute (in fact, if φ is zero at
(say) x→ −∞, then it is identically zero), which means that[

G̃(−)B(−) − B ′(−)G(−)
]
ϕ = O, ∀ϕ 6= 0. (5.13)

Recalling that the equations (5.7) and (5.8) are equivalent, we can replace the (5.13) with

B(−)
t = T̃ (−)B(−) − B(−)T (−), (5.14)

and we can infer that the behavior of the t–component in the system (5.11) is determined by the asymp-
totics (5.14). Therefore, in order to obtain the expression for the BT related to the desired NLEE, one
need to solve for B the first equation in the system (5.11) and then to fix the time–depending integration
constants by requiring that the asymptotics (5.14) is satisfied.

Lastly we have to highlight a remarkable advantage of the
agBT method, related to the permutability theorem. Since
the composition of two gauge transforms is also a gauge trans-
form, the permutability theorem holds trivially within this
framework and can be summarized with the identity

B(2)
31 B(1)

10 = B(1)
32 B(2)

20 , (5.15)

where B(k)
ij ≡ B[Qi,Qj ; ζ; {βk}], being {βk} the set of gauge–

Bäcklund parameters characterizing the transform. The situa-
tion is schematically represented with the commutative gauge–

Bianchi diagram above. Therefore, if the potential matrices Qi with i = 0, 1, 2, 3 go to zero as |x| → +∞
(which is the case of work, having assumed Qnm ∈ S(R) ∀n,m = 1, 2, . . . , N where Qnm is the (nm)–th
component of Q ) it is easy to verify equation (5.15) as x→ −∞ and this proves the theorem, recalling
that the behavior of each B is univocally determined by its asymptotics. At last, note that equation
(5.15) yields the non–linear superposition formula, once the NLEE of interest has been chosen.

42E.g. the x–components of the mKdV and SG–aBTs given in equations (4.17) and (4.19), respectively.
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5.2 Applications to the ZS spectral problem. We desire now to apply the scheme discussed so far to
the 2× 2 ZS spectral problem (3.9). Let the 2× 2 matrix T = T [Q ; ζ] in the auxiliary spectral problem
to have the form of a polynomial of degree n in the spectral parameter ζ, that is

T [Q (x, t); ζ] :=

n∑
j=0

ζn−jTj [Q (x, t)], (5.16)

where the Tj ’s are 2× 2 complex–valued matrices to be determined. Inserting the relation (5.16) in the
AKNS representation for the Lax equation gives ultimately the following equation

ζ0
(

Qt − Tnx + [Q , Tn]
)
−
n−1∑
j=0

ζn−j
(

Tjx − [Q , Tj ] + ı[σ3, Tj+1]
)
− ζn+1[σ3, Tn] = O,

begin X = Q − ıζσ3 and ζt = 0. Setting to zero the coefficients of the powers of ζ, yields the system

ZS :


[σ3, T0] = O, (5.17a)
Tjx − [Q , Tj ] + ı[σ3, Tj+1] = O, j = 0, 1, . . . , n− 1, (5.17b)
Qt − Tnx + [Q , Tn] = O, (5.17c)

where the last equation gives the desired NLEE; note that the second equation in the system (5.17) is
a recursion relation for the set {Tj}j=0,1,...,n−1. Now recall that Q is a 2× 2 off–diagonal matric, whilst
σ3 is a diagonal one; thus, if we separate T = dT + fT , being dT ≡ diag(T ) and fT ≡ T − dT , it’s
possible to rewrite more conveniently the system (5.17) in the form43

fT0 = O, (5.18a)

dTjx = [Q , fTj ], j = 0, 1, . . . , n, (5.18b)

fTjx = [Q , dTj ]− 2ıσ3fTj+1, j = 0, 1, . . . , n− 1, (5.18c)
Qt − fTnx + [Q , dTn] = O. (5.18d)

Integrating equation (5.18b) with respect to x gives

dTj = I
[
[Q , Tj ]

]
+ ηj , j = 0, 1, . . . , n, (5.19)

where I[ · ] :=
´ x
−∞[ · ] dx′ is the x–integral operator over [−∞, x] and {νj}j=0,1,...,n is a set of 2 × 2

arbitrary diagonal matrices independent on the variable x. Inserting equation (5.19) in (5.18c) yields

fTjx =
[

Q , I
[
[Q , fTj ]

]]
+
[
Q , ηj

]
− 2ıσ3dTj+1.

Taking into account that σ2
3 = 12, let’s multiply both members of the previous equation by − ı

2σ3:
isolating then fTj+1 we obtain the following recursive relation for the ZS spectral problem

fTj+1 = L[fTj ] + Qj , fT0 = O, (5.20)

where Qj(x, t) ≡ ı
2σ3[ηj(t),Q (x, t)] with j = 0, 1, 2 . . . , n − 1 and L is an integro–differential operator

acting on the space of (at least) C1 2× 2 off–diagonal complex–valued matrices, defined as

L[ · ] : A ∈ F(2,C) 7→ L[A] :=
ı

2
σ3

(
Ax −

[
Q , I

[
[Q ,A]

]] )
∈ F(2,C).

43Let D(N,C) and F(N,C) be the sets of N × N diagonal and off–diagonal matrices, respectively; if N = 2 then
an off–diagonal matrix is also anti–diagonal. This property leads trivially to the following algebra: d ◦ d′ ∈ D(2,C),
f ◦ d, d ◦ f ∈ F(2,C) and f ◦ f ′ ∈ D(2,C), being d, d′ ∈ D(2,C), f, f ′ ∈ F(2,C). Moreover, one finds that [d, d′] = O,
[d, f ], [f, d] ∈ F(2,C) and [f, f ′] = ασ3 where α ∈ C is a constant. Also, note that [σ3, f ] = 2σ3f which is true ∀ f ∈ F(2,C).
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We’ll call L the ZS–spectral recursion operator (not to be confused with the recursion operator R
defined in §2.4.1). Proceeding in the same fashion for the NLEE (5.18d), we obtain

ı

2
σ3Qt = L[fTn] + Qn. (5.21)

Equations (5.19), (5.20) and (5.21) can be rewritten in a more elegant form, with observing that

fTj = L[fTj−1] + Qj = L2[fTj−2] + L[Qj−1] + Qj = · · ·
= Lj [fT0] + Lj−1[Q0] + Lj−1[Q1] + · · ·+ L[Qj−1] + Qj .

Recalling that fT0 = O (see equation (5.18a)), we finally find
fTj =

j−1∑
k=0

Lj−1−k[Qk],

dTj = I
[
[Q , fTj ]

]
+ ηj ,

j = 0, 1, . . . , n. (5.22)

We have thus univocally determined, up to the set of matrix integration constants {ηj}j=0,1,...,n, the
operator T of the ZS–auxiliary spectral problem and deduced simultaneously an expression for the
associated NLEEs, collected in different hierarchies according to the value of n, that is

ı

2
σ3Qt(x, t) =

n∑
k=0

Ln−k[Qk(x, t)], Qk(x, t) ≡ ı

2
σ3[ηk(t),Q (x, t)]. (5.23)

Remark 5.3 – Although the presence of the integro–differential operator L, the NLEEs in (5.23) are
pure PDEs. In fact, it can be proved that the ZS–system is an infinite–dimensional integrable Hamil-
tonian system [Kar998, AbS981], which means that all the NLEEs derivable from equation (5.23) can
be casted in symplectic–like form (see equation (2.37)), namely Qt = JδQ Hn[Q ] where δQ Hn[Q ] :=
diag(δuH [u, v], δvH [u, v]), for some (possibly singular) skew–adjoint linear operator J.

To give some concrete examples of the above considerations, let’s consider the first three equations
of the ZS–hierarchy. It is convenient to deduce first the NLEE from (5.23) and then the associated
auxiliary spectral operator T from (5.22). If n = 0, one finds immediately that

ı

2
σ3Qt = Q0 =

ı

2
σ3

[
η0,Q

]
=⇒ Qt(x, t) =

[
η0(t),Q (x, t)

]
,

which is a LEE, then uninteresting. Consider therefore the n = 1 case: equation (5.23) becomes
ı
2σ3Qt = L[Q0] + Q1, which can be rewritten explicitly by invoking the definitions of L, Q1 and Q0 as

Qt =
[
η1,Q

]
+
ı

2
σ3

[
η0,Qx

]
− ı

2

[
Q , I

[
[Q , σ3[η0,Q ]]

]]
,

having noted that η0x = 0 by definition. Observe now that the matrices Q and σ3 satisfy the the
following identities: Q σ3Q = −uvσ3, Q 2 = uv12 and Q σ3 = −σ3Q ; thus the commutator involved in
the x–integral operator on the r.h.s. of the above NLEE is zero, that is[

Q , σ3[η0,Q ]
]

= Q σ3Q η0 + σ3Q η0Q − Q σ3Q η0 − σ3η0Q 2 = O.

Therefore, we find the (still uninteresting) LEE Qt = [η1,Q ] + ı
2σ3[η0,Qx]. Let’s try with n = 2: in this

case we have ı
2σ3Qt = L2[Q0] + L[Q1] + Q2 and it can immediately be verified that

L2[Q0] = − ı
8
σ3

(
[η0,Qxx]−

[
Q , I

[
[Q , [η0,Qx]]

]])
, L[Q1] = −1

4
[η1,Qx],
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where we have used again the fact that [Q , σ3[η1,Q ]] = O. The NLEE becomes

Qt = −1

4
[η0,Qxx] +

ı

2
σ3[η1,Qx] +

1

4

[
Q , I

[
[Q , [η0,Qx]]

]]
+ [η2,Q ].

This equation can be further simplified by noting that each ηi = ηi(t) is by definition a 2× 2 diagonal
matrix, thus we may set ηi = diag(ηi

(1), ηi
(2)) with i = 1, 2, . . . , n. This yields immediately the identity

[ηi, f ] = (ηi
(1)− ηi(2))σ3f , which is true ∀ f ∈ F(2,C); therefore one finds[

Q , I
[
[Q , [η0,Qx]]

]]
=
(
η

(1)
0 − η

(2)
0

) [
Q , I

[
[Q , σ3Qx]

]]
= 2

(
η

(1)
0 − η

(2)
0

)
uvσ3Q ,

having noted that [Q , σ3Qx] = −(uv)xσ3 so that I
[
[Q , σ3Qx]

]
= −I

[
(uv)x

]
σ3 = −uvσ3 and used then

the property [σ3, f ] = 2σ3f with f ∈ F(2,C). In the light of the previous observations, we find

Qt = −1

4

(
η

(1)
0 − η

(2)
0

)
σ3Qxx +

ı

2

(
η

(1)
1 − η

(2)
1

)
Qx +

1

2

(
η

(1)
0 − η

(2)
0

)
uvσ3Q +

(
η

(1)
2 − η

(2)
2

)
σ3Q , (5.24)

which can be equivalently rewritten in terms of its components as
ut =

1

4

(
η

(1)
0 − η

(2)
0

)(
2u2v − uxx

)
+
ı

2

(
η

(1)
1 − η

(2)
1

)
ux +

(
η

(1)
2 − η

(2)
2

)
u, (5.25a)

vt =
1

4

(
η

(1)
0 − η

(2)
0

)(
vxx − 2uv2

)
+
ı

2

(
η

(1)
1 − η

(2)
1

)
vx −

(
η

(1)
2 − η

(2)
2

)
v. (5.25b)

As a particular case, let η2(t) = a0(t)σ3, η1(t) = a1(t)σ3 and η0(t) = a2(t)σ3, where a0, a1 and a2 are
arbitrary complex–valued functions independent on x; then the system of NLEEs (5.25) reduces to
the system (3.12), obtained by following the AKNS method (see §3.2). Recall that the system (3.12)
contains classes of NLEEs, corresponding to appropriate choices of a0, a1, a2, u and v; in particular,
setting a0 = 0, a1 = 0, a2 = ıα and v = εu∗, where α ∈ R and ε = ±1, one recovers respectively the
attractive and repulsive NLS equations (see relations (3.14), (3.15)).

Lastly we have to determine the expression for the auxiliary spectral operator T associated to the
family of NLEEs given in (5.24). Setting n = 2 in (5.16) leads to T = ζ2T0 +ζT1 +T2. Invoking therefore
the equations (5.22) and repeating the same arguments considered above, we find

T0 = η0, T1 =
ı

2
σ3

[
η0,Q

]
+ η1, T2 = −1

4
I
[
[Q , [η0,Qx]]

]
− 1

4

[
η0,Qx

]
+
ı

2
σ3

[
η1,Q

]
+ η2.

Recalling the notation introduced before for the diagonal matrices ηi, one finally obtains

T = ζ2η0 + ζη1 +
1

4

(
η

(1)
0 − η

(2)
0

)(
2ıζQ + uvσ3 − σ3Qx

)
+
ı

2

(
η

(1)
1 − η

(2)
1

)
Q + η2. (5.26)

5.2.1 Gauge–Bäcklund Transforms for the ZS spectral problem. Let’s now determine the aBTs for
the ZS system by means of the associated agBTs. Recall that the matrix B = B[Q , Q̃ ; ζ] must satisfy the
system (5.11), where now X = Q − ıζσ3 and X̃ = Q̃ − ıζσ3, being Q̃ (x, t) := Q |(u,v)≡(ũ,ṽ)(x, t); note also
that T̃ is obtained from T via the relation T̃ = T [Q ; ζ]Q =Q̃ . By analogy with the procedure followed in
§5.2, assume B to be a matrix polynomial of degree m in the spectral parameter ζ, namely

B[Q , Q̃ ; ζ] =

m∑
j=0

ζm−jBj [Q , Q̃ ], (5.27)

where the Bj ’s are 2× 2 complex valued matrices to be determined. Inserting the expression (5.27) into
the first equation of the system (5.11), that is Bx = Q̃ B − BQ + ıζ[B, σ3], we obtain

m∑
j=0

ζm−j
(

Bjx − Q̃ Bj + BjQ
)

= ı

m∑
j=0

ζm−j+1
[
Bj , σ3

]
.
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Setting to zero the coefficients belonging to the same powers of ζ, yields finally

ZS :


[σ3, T0] = O, (5.28a)
Bjx = Q̃ Bj − BjQ − ı[σ3,Bj+1], j = 0, 1, . . . ,m− 1, (5.28b)

Bmx − Q̃ Bm + BmQ = O. (5.28c)

Note the strong analogy with the system (5.17); in particular, observe that the equation (5.28c) gives
the expression for the x–component of the ZS–aBT between the matrix potentials Q and Q̃ .

The system (5.28) can be further simplified with separating B into a sum of diagonal and off–diagonal
matrices, namely B = dB+fB. Inserting this into the system (5.28) and recalling the identities [d, d′] = O

∀ d ∈ D(2,C) and [σ3, f ] = 2σ3f ∀ f ∈ F(2,C), we ultimately obtain
fB0 = O, (5.29a)

dBjx = Q̃ fBj − fBjQ , j = 0, 1, . . . ,m, (5.29b)

fBjx = Q̃ dBj − dBjQ − 2ıσ3fBj+1, j = 0, 1, . . . ,m− 1, (5.29c)

fBmx = Q̃ dBm − dBmQ . (5.29d)

Integration with respect to x of equation (5.29b) leads to

dBj = I
[
Q̃ fBj − fBjQ

]
+ γi, j = 0, 1, . . . ,m, (5.30)

where the γi’s are 2 × 2 matrix integration constants independent of x. By analogy with §5.2 we can
rewrite the recursive relations (5.29c), (5.29a) in a more elegant form as

fBj+1 = Λ[fBj ] + Πj , Πj ≡ −
ı

2
σ3

(
Q̃ γj − γjQ

)
, j = 0, 1, . . . ,m− 1, (5.31)

having introduced the integro–differential operator Λ, which acts over the space of (at least) C1 off–
diagonal 2× 2 complex–valued matrices and is defined as

Λ[ · ] : f ∈ F(2,C) 7→ Λ[f ] :=
ı

2
σ3

(
fx + I

[
Q̃ f − fQ

]
Q − Q̃ I

[
Q̃ f − fQ

])
∈ F(2,C).

Note that the ZS–recursive spectral operator L is a particular case of the ZS–recursive gauge–
Bäcklund operator Λ since Λ|Q̃ =Q = L. Therefore the gauge–Bäcklund matrix B = B[Q , Q̃ ; ζ] is
univocally determined, up to the set of matrices {γj}j=0,1,...,m, by the following expressions

fBj =

j−1∑
k=0

Λj−1−k[Πj ],

dBj = I
[
Q̃ fBj − fBjQ

]
+ γj ,

j = 0, 1, . . . ,m, (5.32)

being fB0 = O. Within this new formalism, the agBT given by equation (5.29d) becomes

O = fBmx − Q̃ dBm + dBmQ = Λ[fBm] =⇒
m−1∑
k=0

Λm−1−k[Πk] = O, (5.33)

where we have used again the property fB0 = O. The equation (5.33) represents the x component
of the aBT for the ZS system and holds for all the NLEEs belonging to the hierarchy. To obtain the
t–component of ZS–aBT (which depend on the expression for the auxiliary spectral operator T related
to the particular NLEE under scrutiny) one need to study the asymptotic behavior (say at x→ −∞) of
the second equation in the system (5.11). Practically speaking, it is sufficient to insert the expressions
(5.32) in equation (5.14) and determining in this way the set of matrices {γj}j=0,1,...,m.
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As a concrete example, consider the m = 1 case: equation (5.27) yields B = ζB0 + B1 and from the
equations (5.32) we get B0 = γ0 and B1 = Π0 + I

[
Q̃ Π0 −Π0Q

]
+ γ1. Therefore, one has

B = ζγ0 + γ1 + Π0 + I
[
Q̃ Π0 −Π0Q

]
.

For future reference, let’s calculate the integral operator involved in the relation above: recalling that
Π0 = − ı

2σ3

(
Q̃ γ0 − γ0Q

)
and that Q̃ σ3Q̃ = −ũṽσ3, Q 2 = uv12, one finally obtains

I
[
Q̃ Π0 −Π0Q

]
=
ı

2
I
[
ũṽ − uv

]
σ3γ0. (5.34)

Inserting the equation (5.34) in the expression for the gauge–Bäcklund matrix B leads to

B = ζγ0 + γ1 +
ı

2
σ3

[
I[ũṽ − uv]γ0 −

(
Q̃ γ0 − γ0Q

)]
, (5.35)

which can be rewritten in terms of its components as

B =

ζγ(1)
0 + γ

(1)
1 + ı

2I[ũṽ − uv]γ
(1)
0

ı
2

(
γ

(1)
0 u− γ(2)

0 ũ
)

ı
2

(
γ

(1)
0 ṽ − γ(2)

0 v
)

ζγ
(2)
0 + γ

(2)
1 − ı

2I[ũṽ − uv]γ
(2)
0

 .

Finally, let’s calculate the associated aBTs. Setting m = 1 in (5.33), yields Λ[Π0] + Π1 = O; thus we
have to calculate the expression for the recursive gauge–Bäcklund operator. By definition, one finds

Λ[Π0] =
ı

2
σ3

(
Π0x + I

[
Q̃ Π0 −Π0Q

]
Q − Q̃ I

[
Q̃ Π0 −Π0Q

])
=
( ı

2
σ3

)2{
I[ũṽ − uv]

(
Q̃ γ0 + γ0Q

)
−
(

Q̃xγ0 − γ0Q
)}
.

Having in mind that Π1 = − ı
2σ3(Q̃ γ1 − γ1Q ), we finally obtain(

Q̃xγ0 − γ0Qx
)
− I[ũṽ − uv]

(
Q̃ γ0 + γ0Q

)
− 2ıσ3

(
Q̃ γ1 − γ1Q

)
= O, (5.36)

which can be written in terms of its components by defining γi ≡ diag(γi
(1), γi

(2)), so that
(
γ

(2)
0 ũx − γ(1)

0 ux

)
− I[ũṽ − uv]

(
γ

(2)
0 ũ+ γ

(1)
0 u

)
− 2ı

(
γ

(2)
1 ũ− γ(1)

1 u
)

= 0, (5.37a)(
γ

(1)
0 ṽx − γ(2)

0 vx

)
− I[ũṽ − uv]

(
γ

(1)
0 ṽ + γ

(2)
0 v

)
+ 2ı

(
γ

(1)
1 ṽ − γ(2)

1 v
)

= 0. (5.37b)

The system (5.37) contains, as particular examples, all the expressions for the x–components of the aBT
we’ve found in §4.2 by following the Chen’s method and the Wadati–Konno’s approach.

Note that the integral I[ũṽ − uv] can be put in local form by means of the so–called elemental
BTs [Pem995], which are obtained when the matrices γ0 and γ1 are singular; in this case the matrix
B is given by the matrix representative of the agBTs generators. However, for some particular systems
different procedures may be used; we present here an approach, suggested in private conversation by B.
G. Konopelchenko, for the mKdV equation ut − 6εu2ux + uxxx = 0 with ε = ±1 and u = εu.

Remark 5.4 – Before entering the discussion, note that the matrix potentials’ components are S(R)
functions, so Q , Q̃ → 0 as (say) x→ −∞; the systems (5.22), (5.32) behave then asymptotically as

T (−) :

{
fT (−)
j = O,

dT (−)
j = ηj ,

j = 0, 1, . . . , n, B(−) :

{
fB(−)

i = O,

dB(−)
i = γi,

i = 0, 1, . . . ,m. (5.38)

Therefore, in order to fix the expressions for the matrices {ηj}j=0,1,...,n and {γi}i=1,2,...,m we need to
insert the above expressions into equation (5.14); doing this, we get

Bi
(−)
t =

n∑
j=0

ζn−j
(

T̃ (−)
j B(−)

i − B(−)
i T (−)

j

)
=⇒ γit = γi

n∑
j=0

ζn−j
(
η̃j − ηj

)
= O,
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being γi, ηj ∈ D(2,C) and having used the fact that η̃j = ηj for all j = 0, 1, . . . , n since T̃ = T [Q ; ζ]Q =Q̃.
It must be emphasized that the property γit = O ∀ i = 1, 2, . . . , n holds in the case under scrutiny, that
is the (2× 2) ZS system, but it could not be true for more general system.

From the above consideration it follows that γ0t = O = γ1t. Now insert the reduction u = εv into
the system (5.37): equations (5.37a) and (5.37b) are consistent iff γ0 = −2ı12 and γ1 = γσ3, being
γ ∈ C an arbitrary constant. Thus the system of equations (5.37) reduces to the expression(

ũ− u
)
x

=
(
ũ− u

) (
γ + εI

[
ũ2 − u2

])
. (5.39)

Let’s express I[ũ2−u2] in local form by means of the Konopelchenko’s approach. Consider the mKdV–
BTs with γ0 = −2ı12 and γ1 = γσ3 but without the reduction v = εu. The system (5.37) becomes

(
ũ− u

)
x

=
(
ũ+ u

)(
I
[
ũṽ − uv

]
+ γ
)
, (5.40a)(

ṽ − v
)
x

=
(
ṽ + v

)(
I
[
ũṽ − uv

]
+ γ
)
. (5.40b)

Now multiply the equations (5.40a) by ṽ and (5.40b) by u and subtract the latter from the former;
repeat the procedure, this time with multiplying (5.40a) by v and (5.40b) by ũ. Ultimately, one finds ũxṽ + vxu−

(
uṽ
)
x

=
(
ũṽ − uv

)(
I
[
ũṽ − uv

]
+ γ
)
,(

ũv
)
x
− uxv − ṽxũ = −

(
ũṽ − uv

)(
I
[
ũṽ − uv

]
+ γ
)
.

Subtracting the latter expression from the former, yields finally[
(ũ− u)(ṽ − v)

]
x

= 2
(
ũṽ − uv

)(
I
[
ũṽ − uv

]
+ γ
)
.

Integrate this equation once with respect to x′ over the interval (−∞, x): recalling that ∂x{
(
I[f(x)]

)2} =
2I[f(x)]∂x{I[f(x)]} = 2f(x)I[f(x)], being f an arbitrary C0(R) function, we find(

I
[
ũṽ − uv

])2

+ 2γI
[
ũṽ − uv

]
−
(
ũ− u

)(
ṽ − v

)
= 0, (5.41)

where the integration constant has been set to zero since I[ũṽ − uv] = 0 for (ũ, ṽ) = (u, v). Equation
(5.41) is an algebraic equation of the second order in the unknown I[ũṽ − uv] with solution

I
[
ũṽ − uv

]
=
√
γ2 +

(
ũ− u

)(
ṽ − v

)
− γ, (5.42)

where we have excluded the solution with the minus sign, since I[ũṽ − uv] is zero for (ũ, ṽ) = (u, v).
Forcing the reduction v = εu in (5.42) and inserting this expression into (5.39), we find(

ũ− u
)
x

=
(
ũ+ u

)√
γ2 + ε

(
ũ− u

)2
, (5.43)

which is equivalent to the formula (4.18) for the x components of the mKdV–aBTs.
Lastly, let’s deduce the mKdV–solitary–wave solution from equation (5.43). In order to do this, set

ε = −1 in (5.43) and choose u(x, t) = 0 as seed–solution; one then obtains

ũx = ũ
√
γ2 − ũ2

g≡ũ/γ
−−−−→ gx = γg

√
1− g2.

The integral
´

[ g(1 − g2)1/2]−1 d g can be casted in a fundamental form by means of the substitution
g 7→ y = (1− g2)1/2, which leads to γx+ f (t) =

´
(y2 − 1)−1 d y = −arctanh(y). Returning then to the

variable g ≡ ũ/γ and invoking the well–known identity cosh2 x− sinh2 x = 1, we ultimately obtain

ũ(x, t) = γsech
[
γx+ f (t)

]
,
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where the integration constant f (t) is fixed by assuming ũ to be a solution of the mKdV, so that
f (t) = −γ3t+ x0. Therefore, the mKdV–solitary–wave solution has the form

ũ(x, t) = γsech
[
γ(x− γ2t) + x0

]
, (5.44)

being γ the height of the solitary–wave and γ2 its velocity.

5.3 Permutability theorem and nonlinear superposition formula. In §5.1 we have discussed the
role that the permutability theorem plays within the gauge–Bäcklund transform theory and summarized
it with equation (5.15). Here we wish first to verify the validity of the condition (5.15) for the agBTs of
the ZS spectral problem and then to obtain the associated nonlinear superposition formula.

The proof of the gauge–Bianchi permutability theorem for the ZS spectral problem follows almost
trivially; in fact, we’ve already seen that a sufficient condition to prove the commutativity relation (5.15)
is to verify it asymptotically (say) as x→ −∞. But from equation (5.38) we know that the B’s behave
asymptotically like pure diagonal matrices, which always commute and this completes the proof.

Let’s now focus on the ZS–nonlinear superposition formula. Recalling the arguments discussed in
§4.1 for the classical aBT of the SG–equation, we want here to develop an equivalent analysis that
would allow us to determine a closed formula expressing without quadratures the matrix potential Q3 in
terms of Q0, Q1 and Q2, where Q0 is a given seed matrix potential (see the commutative gauge–Bianchi
diagram in §5.1), usually taken as Q (x, t) = O. Therefore, consider the commutative condition (5.15)
and assume m = 1 for simplicity: having in mind the shorthand definition for the Bij(k)’s given in §5.1
and the fact that (for m = 1) the B’s are univocally determined by equations (5.32) up to the matrix
integration constants γ0, γ1, we ultimately have to calculate explicitly the expression

B
[
Q3,Q1; ζ;α2, β2

]
B
[
Q1,Q0; ζ;α1, β1

]
= B(2)

31 B(1)
10 = B(1)

32 B(2)
20 = B

[
Q3,Q2; ζ;α1, β1

]
B
[
Q2,Q0; ζ;α2, β2

]
,

having defined (α ≡ β) ≡ (γ0, γ1), for notation simplicity. Inserting in the above relation the formula
(5.35) for the B’s matrices in the m = 1 case, leads us the relation{
ζα2 + β2 +

ı

2
σ3

[(
I3 − I1

)
α2 −

(
Q3α2 − α2Q1

)]}{
ζα1 + β1 +

ı

2
σ3

[(
I1 − I0

)
α1 −

(
Q1α1 − α1Q0

)]}
=
{
ζα1 + β1 +

ı

2
σ3

[(
I3 − I2

)
α1 −

(
Q3α1 − α1Q2

)]}{
ζα2 + β2 +

ı

2
σ3

[(
I2 − I0

)
α2 −

(
Q2α2 − α2Q0

)]}
,

where Ii ≡ 1
2

´ x
−∞ uivi dx′ for i = 0, 1, 2, 3. Equate to zero the coefficients belonging to same powers of

ζ: it follows that ζ1 and ζ2 return trivial identities, whilst ζ0 gives a non–trivial equation that can be
conveniently solved by separating again the diagonal terms from the off–diagonal ones. The final results
turns out to be [BoT982, Pem995]

Q3 = 2σ3

(
FP −MN

)(
σ1M σ1M − P 2

)−1
, (5.45)

where we operators F , M , M and B are defined as

P ≡ 1

2
σ3

(
α2Q1α1 − α1Q2α2

)
, (5.46a)

M ≡
(
I2 − I − 1

)
σ3α2α1 + ı

(
α2β1 − α1β2

)
, (5.46b)

F ≡
(

I1 + I2 − I0

)
σ3M − 1

2
Pσ3Q0 −

1

4
α2

(
Q 2

2 − Q 2
1

)
α1, (5.46c)

N ≡ 1

2
M σ3Q0 +

ı

2
σ3

(
β2Q1α1 − α2Q1β1 − β1Q2α2 + α1Q2β2

)
− I0Pσ3. (5.46d)

Note that all the integral operators in (5.46) can be put in local form by means of the elemental gBTs.
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6 Painlevé Transcendents

In previous sections we have discussed some properties that IST–solvable NLEEs have in common. In
particular, we’ve understood that this class of PDEs possess a remarkably rich structure: Lax and
AKNS pairs, soliton solutions, an infinite sets of conserved quantities, Hamiltonian and bi–Hamiltonian
structures, Bäcklund and gauge–Bäcklund transformations. However, as we’ve pointed out elsewhere
through the exposition, we still don’t know whether any condition is both necessary and sufficient for
a NLEE to be IST–solvable. The theory of the Painlevé transcendents places itself in this contest as
a possibly conclusive approach to the problem. In fact, with a series of papers published in the early
80’s, the team of M. Ablowitz, A. Ramani and H. Segur introduced a conjecture, known today as
the Painlevé conjecture, which tries to give a unified view of the above scenario [ARS978, ARS80a,
ARS80b]. However, despite the lack of counterexamples and the existence of many arguments that points
toward the validity of the conjecture [ARS80a], we still lack a complete proof. This section provides a
brief introduction to the theory of Painlevé trascendents and its connection with IST–solvable NLEEs.
Note that the exposition mainly follows the one given by M. Ablowitz & H. Segur in their monograph
[AbS981]; for further readings, we remind to the works of J. Weiss et al. [WTC983, Wei983].

We start by recalling some properties of ODEs in complex domain. Consider the n–th order ODE

dn w
d zn

+ P1(z)
dn−1 w
d zn−1

+ · · ·+ Pn−1(z)
d w
d z

+ Pn(z)w = 0, (6.1)

where w = w(z). If the functions P1, P2, . . . , Pn are analytic at z = z0, then z0 ∈ C is said to be a regular
point for the ODE (6.1) and for a given initial condition there exists a unique analytic solution in the
form of a Laurent series, i.e. w(z) =

∑
k∈Z ak(z − z0)k. Thus any singular point of the solutions of

the ODE (6.1) must be located only at the singularities of the {Pi}i=1,2,...,n, which means that all these
singularities are fixed, since their location doesn’t depend on the initial conditions. This is a common
property of ODEs and is lost in the case of NLODEs. A simple example is given by

wz + w2 = 0 =⇒ w
(

z; z0

)
=

1

z − z0
,

where the location of the singularity depends on the constant of integration. For this reason, these points
are called movable singularities; note that NLODEs may exhibit both movable and fixed singularities.

Since singular points will play a relevant role in the arguments that will follow, it is convenient to
recall some basics about their classification, summarized in the definitions below [AbF003].

Definition 6.1 - Let z0 be a point of the compactified complex plane C∗ := C ∪ {∞} s.t. f 6∈ Cω(z0).
We say that z0 is an isolated singularity of f if ∃ r ∈ R+ and a punctured neighborhood Ωr (z0) ≡ {z ∈
C∗ : |z − z0| ∈ R+} s.t. f (z) ∈ Cω(Ωr (z0)), ∀ z ∈ Ωr (z0). An isolated singularity z0 of f is called

� removable iff ak ≡ 0 ∀ k ∈ Z−, i.e. iff f (z) =
∑
k∈N0

ak(z − z0)k, ∀ z ∈ Ωr (z0);

� a pole of order m iff ∃m ∈ N finite s.t. f (z) =
∑+∞
k=−m ak(z − z0)k, ∀ z ∈ Ωr (z0);

� essential iff it’s a pole of infinite order, i.e. iff f(z) =
∑
k∈Z ak(z − z0)k, ∀ z ∈ Ωr (z0).

Definition 6.2 - Let f ∈ Cω(Ω), Ω an open set of C∗. A point z0 ∈ Ω is called a branch point of f
if f(z) is discontinuous upon traversing a small circuit around z0

44.

Hereafter we will call critical points the family of all singular points that are not poles (of any order).
The need for a complete classification of singularities has its origin in a problem arose in the late

19th century, that is the classification of ODEs on the basis of the singularities they admit [Inc956]. In
particular, a special interest was reserved for ODEs satisfying the following

44Branch points are divided into three subclasses: algebraic, transcendental and logarithmic. Note that all these classes
of singularities aren’t independent, e.g. transcendental and logarithmic branch points are also essential singularities.
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Property 6.1 - Let F = F (dn−1
z w ,dn−2

z w , . . . ,w ; z) be a rational function in w and its derivatives,
which is also locally analytic in z. We say that the n–th order ODE

dn w
d zn

= F
(

dn−1 w
d zn−1

,
dn−2 w
d zn−2

, . . . ,w ; z
)
, (6.2)

satisfies the Painlevé property (equiv. is a P–type) if its movable singularities are at worst poles.

First attempts in the classification of ODEs of the form (6.2) where made by J. H. Poincaré
(1854–1912) and J. I. Fuchs (1833–1902), who showed that out of the class of first order equations, the
only ones of P–type can be transformed into generalized Riccati equations, i.e. w ′ = P0 + P1w + P2w2.
After these results, C. E. Picard (1856–1941) pointed out that for orders greater than one, movable
critical points can occur, but failed in trying to find new examples. Around 1900 S. V. Kovalevskaya
(1850—1891), P. Painlevé (1863–1933) and B. Gambier studied second order ODEs of the form (6.2)
satisfying the Painlevé property and found that, up to a Möebius transform

W (z̃) :=
a(z)w + b(z)

c(z)w + d (z)
, z̃ ≡ φ(w ; z), (6.3)

where a, b, c, d and φ are locally analytic functions, every P–type 2nd order ODE can be put into one of
fifty canonical forms [Kov889, Pai900, Pai902, Gam910]. Out of these, fortyfour types could be reduced
to already known ODEs (solvable in terms of trigonometric or elliptic functions), whilst the remaining
six defined new NLODEs that cannot be reduced to any simpler known ODE. These are the so–called
Painlevé transcendents (or Kovalevskaya–Painlevé–Gambier transcendents), listed below:

PI :
d2 w
d z2

= 6w2 + z, (6.4)

PII :
d2 w
d z2

= 2w3 + wz + α, (6.5)

PIII :
d2 w
d z2

=
1

w

(
d w
d z

)2

− 1

z
d w
d z

+
αw2 + β

z
+ γw3 +

δ

w
, (6.6)

PIV :
d2 w
d z2

=
1

2w

(
d w
d z

)2
3

2
w3 +

3w3

2
+ 4zw2 + 2(z2 − α)w +

β

w
, (6.7)

PV :
d2 w
d z2

=

(
1

2w
+

1

w − 1

)(
d w
d z

)2

− 1

z

(
d w
d z

)
+

(w − 1)2

z2

(
αw +

β

w

)
, (6.8)

PVI :

d2 w
d z2

=
1

2

(
1

w
+

1

w − 1
+

1

w − z

)(
d w
d z

)2

−
(

1

z
+

1

z − 1
+

1

w − z

)
d w
d z

+

+
w(w − 1)(w − z)

z2(z − 1)2

(
α+ β

z
w2

+ γ
z − 1

(w − 1)2
+ δ

z(z − 1)

(w − z)2

)
,

(6.9)

being α, β, γ and δ are arbitrary constants45. Although we will focus on PI–PVI, it has to be noted
that the classification of higher order P–type ODEs is still an open problem. Actually we know just
few examples of P–type ODEs of 3rd order [Cha911] and even fewer of 4th and 5th order46 [Kud997].

There are at least two tests to check if an ODE is of P–type. The first one follows from the fact
that if a 2nd order ODE possesses the Painlevé property, then it is either linearizable or can be put
into one of the six Painlevé transcendents by appropriate coordinate transforms. Otherwise, especially

45More correctly, one should call the solutions of PI–PVI as Painlevé transcendents, since for arbitrary values of
the parameters α, β, γ and δ the general solutions of PI–PVI are transcendental, that is they cannot be expressed in
closed–form by means of elementary functions. However, the six equations are often referred in the literature as the six
Kovalevskaya–Painlevé–Gambier transcendents and for this reason we’ll adopt this choice hereafter.

46For further readings see U. Muğan & F. Jrad, Painlevé test and higher order ODEs [MuJ002] and references therein.
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if one suspects that the ODE is not of P–type, a singular point analysis may be performed [Dun010].
In fact, if an n–th order ODE is of P–type, then its general solution admits a Laurent expansion with
a finite number of negative powers. Assume therefore that the leading term in the expansion goes like
w(z) ∼ a(z − z0)p as z → z0, with a, p ∈ C and a 6= 0. Inserting this into the ODE and requiring the
maximal balance condition (i.e. two (or more) terms must be of equal maximally small order as z → z0),
one determines a and p and finally the form of a solution around z0. Therefore, if z0 is a singularity we
can determine if it’s movable and to what class it belongs. As an example, consider the ODE

w ′ = w3 + z;

the maximal balance condition gives ap(z − z0)p−1 ∼ a3(z − z0)3p so p = −1/2, a = ±ı/
√

2 and then

w(z)
z→z0∼± ı√

2

(
z − z0

)−1/2
.

Therefore w = w(z) possesses a movable branch point at z = z0 and the ODE is not of P–type.

Remark 6.1 – The Painlevé property guarantees that the solutions of equations PI–PVI are single
valued, thus giving rise to proper functions. The importance of the Painlevé transcendents is that
they properly define new transcendental functions, just as e.g. the exponential function w(z) = ez can
be defined as the general solution of the ODE w ′ = w with initial condition w(0) = 1 [Dun010]. A
subtle issue related to these new transcendental functions is their irreducibility, in the sense of the
Umemura definition [Ume987]. Roughly speaking, this means that within the field of smooth functions,
the solutions of PI–PVI form a set that is disjoint from the one of classical functions, which is defined
by starting off with the rational functions Q and adjoining those functions which arise as solutions of
algebraic and linear differential equations with coefficients in Q. Painlevé himself anticipated that the
solutions of PI–PVI define "irreducible functions" (i.e. new transcendentals) but some rigorous proofs
appeared only recently for PI [Ume987, Ume990], PII and PIV [NoO997]. What’s interesting is that
to show this property the authors use a far reaching extension of the Galois Theory from the number
fields to differential fields of functions [Dun010]; in this way the irreducibility problem for the Painlevé
equations becomes noting but than the analogous problem to the existence of non–algebraic numbers47.

Finally note that the Painlevé transcendents satisfy the so–called coalescence cascade relations, which
can be schematically expressed by means of the so–called coalescence diagram [Oka986]

PVI −−−−→ PV −−−−→ PIVy y
PIII −−−−→ PII −−−−→ PI

For example, setting α ≡ 4ε−15 and w(z;α) = εω(ζ) + ε−5 with z = ε2ζ − 6ε−10 in PII, yields

ωζζ = 6ω2 + ζ + ε6
(
2ω3 + ζω

) ε→0−−−→
(
PI

)
: ω′′ = 6ω2 + ζ.

Similar transformations allows one to visit the remaining directions in the diagram [OLBC10].

6.1 Lax pairs and Hamiltonian structure. In this section we’ll show that the Painlevé equations
are actually isospectral deformation equations, which can be obtained from a Lax–type compatibility
condition. We stress that here the role of the independent variables x, t does not necessarily parameterize
space and time; indeed, the whole argument is extrapolated from a much more general contest that won’t
be discussed [FlN980]. Also, we’ll see how PI–PVI can be interpreted as Hamiltonian systems.

47For further readings see V. I. Gomak, I. Laine, S. Smimomura – Painlevé differential equations in the complex
plane [GLS002] or the recent monograph of R. Conte, M. Musette entitled The Painlevé Handbook [CoM008].
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Let’s start from the equation PI. Introduce the linear operators XPI = XPI[w(x, t);x, t] and TPI =
TPI[w(x, t);x, t] associated, say, to the principal and auxiliary spectral problems, respectively

XPI[w ;x, t] ≡
(
4x4 + 2w2 + t

)
σ3 − ı

(
4x2w + 2w2 + t

)
σ2 −

(
2xw ′ +

1

2x

)
σ1,

TPI[w ;x, t] ≡
(
x+

1

x

)
σ3 − ı

w
x
σ2,

(6.10)

where σ1, σ2 and σ3 are the Pauli–matrices. The compatibility condition force then XPI and TPI to
satisfy the Lax–equation in AKNS formalism (3.8), conveniently rewritten here as

XPIt − TPIx =
[
TPI, XPI

]
.

Recalling the commutativity relation [σi, σj ] = ıεijkσk, being εijk the Levi–Civita symbol, one finds

XPIt − TPIx =
(

4ww ′ − w ′

x
+

w
x2

)
σ3 + ı

(w ′

x
− w
x2
− 4ww ′ − 4x2w ′ − 1

)
σ2 − 2xw ′′σ1,[

TPI,XPI

]
=
(

2ww ′ +
w

2x2

)
σ3 − ı

(
2x2w ′ + 2ww ′ +

1

2
+

w
2x2

)
σ2 −

(
6xw2 + tx

)
σ1.

Equating the coefficients of σ1 (being the only ones to contain a non–trivial NLEE), one finds

w ′′ = 3w2 + 1
2 t;

thus w = w(x, t) satisfies the first Painlevé transcendental equation with z = t.
In analogous fashion, consider the following two linear operators for the equation PII:

XPII
[w ;x, t] ≡ −ı

(
4x2 + 2w2 + t

)
σ3 − 2w ′σ2 +

(
4xw − αx−1

)
σ1,

TPII
[w ;x, t] ≡ wσ1 + ıxσ3,

(6.11)

where α ∈ C is an arbitrary constant. Following the same procedure as for PI, we obtain

XPII t − TPII
= −2ıww ′σ3 −

(
2w3 + tw + α

)
σ2 + 2xw ′σ1,[

TPII
,XPII

]
= −4ıww ′σ3 − 2w ′′σ2 + (4x− 1)w ′σ1.

Equating the σ2’s coefficients, we find the equation (6.5). Analogous, but more involved, isospectral
deformation equations can be obtained for the remaining transcendentals [JiM981, FlN980].

Finally, let’s briefly discuss the connection with the Hamiltonian formulation. The main observation
is that the equations PI–PVI can be written in the form of Hamilton–Liouville equations

d q
z

=
∂H [q , p; z]

d ∂p
,

d q
z

= −
∂H [q , p; z]

d ∂q

for non-autonomous Hamiltonian systems, i.e. systems whose Hamiltonian depends explicitly on the
independent variables. For instance, consider the following non–autonomous Hamilton function

HPI
[q , p; z] = 1

2 p2 − 2q3 − zq =⇒

{
q ′ = p,
p′ = 6q2 + z,

thus q ′′ = 6q2 + z and q = q(z) satisfies PI. Similarly it’s straightforward to verify that

HPII [q , p; z] = 1
2 p2 −

(
q2 + 1

2 z
)

p −
(
α+ 1

2

)
q ,

is the Hamilton function for PII. In fact, one finds q ′ = p − q2 − z
2 and p′ = 2qp + α+ 1

2 so that

q ′′ = q3 − 1
2 qz + α+ 1,
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which means that q = q(z) satisfies PII with α ≡ α− 1. Finally the Hamiltonian for PIII is

HPIII
[q , p; z, θ0, θ∞, κ0, κ∞] =

1

z
q2p2 − 1

z
[
κ∞zq2 +

(
2θ0 + 1

)
q − κ0z

]
p + κ∞

(
θ0 + θ∞

)
q ,

where θ0, θ∞, κ0 and κ∞ are arbitrary constants. In fact, it can be proved that q = q(z) satisfies PIII with
(α, β, γ, δ) ≡

(
−2κ∞θ∞, 2κ0(θ0 +1), κ2

∞,−κ2
0

)
[OLBC10]. Analogous (but rather involved) Hamiltonian

structures can be introduced for the remaining transcendentals PIV–PVI [FoW004, Oka987].

6.2 Connection with IST–solvable NLEEs. In the last paragraph we’ve noted that the Painlevé
transcendents have many features in common with the NLEEs studied so far. Those common structures
suggest the presence of a direct connection with (say) KdV, SG or NLS, but don’t give a clear answer
to what this connection could be. This paragraph is devoted to give a clue on how the Painlevé
transcendents are related to IST–solvable NLEEs. As an introductory example, consider the KdV
equation K[u] = 0: note that it admits traveling–wave solutions, corresponding to the scaling relations

ξ = x− ct, u(x, t) = U(ξ), (6.12)

which yield the relations ut = Uξξt = −cUξ and Ux = Uξ. Therefore the function U = U(z) satisfies the
2nd order ODE Uξξξ + 6UUξ − cUξ = 0 which can be integrated once with respect to z in order to give

Uξξ + 3U2 − cU = α′
U 7→w+c/6−−−−−−−→ w ′′ + 3w2 + α = 0,

where α ≡ α′ + c2

16 is an arbitrary constant. The solution of the rescaled ODE above is given by the
Weierstrass elliptic function whose only singularities are poles, thus satisfying the Painlevé property.
Now consider the re–scaling associated to the so–called similarity KdV–solution, given by

z = x+ 3λt2, u(x, t) = w(z)− λt,

being λ ∈ C; in this case w = w(z) satisfies the ODE w ′′′ + 6ww ′ − λ = 0, whose integration gives

w ′′ + 3w2 − λz = α
w 7→−w−−−−−→ w ′′ = 3w2 − λz − α.

Confronting the scaled ODE above with the first Painlevé transcendent (6.4), one deduces that w = w(z)
is expressible in terms of solutions of PI. Equivalently, it can be verified for the scaling reduction

z = x(3t)−
1/3, u(x, t) =

(
3t
)−2/3[

w ′(z) + w2(z)
]
, (6.13)

that the function w = w(z) satisfies the second Painlevé transcendent (see appendix A).

Definition 6.3 - Each ODE obtained from a PDE by a proper scaling reduction (i.e. by suitably
restricting the set of its solutions) is called an exact reduction of the PDE.

Another example is given by the mKdV: an exact reduction corresponds to the scaling relation

z = x(3t)−
1/3, u(x, t) =

(
3t
)−1/3

w(z), (6.14)

which leads to ut = −(3t)−4/3(zw)′ and ux = (3t)−2/3w ′, so that one finds

w ′′′ − 6w ′w2 = (zw)′ −→ w ′′ = 2w3 + zw + α.

Thus w = w(z) satisfies PII with α an integration constant. Similar considerations follow also for the
Boussinesq equation utt = uxx+ 1

2 (u2)xx+ 1
4 ux4 (see §1.2). An exact reduction was obtained by Zakharov

by looking for traveling–wave solution u(x, t) = w(z) with z = x− ct, where w = w(z) satisfies the ODE
w ′′′′ + 2(w2)′′ + 2(1− c2)w ′′ = 0, which can be integrated twice to give

w ′′ + 2w2 + 4(1− c)w + αz + β = 0
w 7→w−1+c2−−−−−−−−→ w ′′ + 2w2 + αz + β′ = 0,
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where β′ ≡ β + 4c2 − 2c4 − 2 is an arbitrary constant. Depending weather α = 0 or α 6= 0, the function
w = w(z) is expressible in terms of the Weierstrass elliptic function or solutions of PI, respectively.
Finally, consider the (light–cone) SG equation uxt = sin u and assume the scaling reduction

z = xt, u(x, t) = w(z), (6.15)

where the function w = w(z) satisfies the ODE

zw ′′ + w ′ = sin w
w 7→w=ı ln f
−−−−−−−−→ f ′′ =

(f ′)2

f
−

f ′

z
+

f 2

2z
− 1

2z
,

which is equivalent to PIII with α = −β = 1/2 and γ = δ = 0. The previous equations represent only
few examples of many other known IST–solvable NLEEs that have P–type exact reductions, e.g. it has
been proved that the derivative–NLS (see equation (1.24)) eventually reduces to PIV [ARS80b].

What is remarkable in the above scenario is that all those NLEEs are IST–solvable, thus suggesting
an apparent correspondence between P–type exact reductions and IST–solvability. Having in mind the
connection between IST–solvable NLEE and integrable infinite dimensional Hamiltonian systems (see
§2.4.1), Ablowitz, Ramani and Segur made in 1980 the following, still unproved, conjecture:

ARS Conjecture - A NLEE is integrable only if all its nonlinear exact reductions are of P–type.

Let us assume the validity of the conjecture in order to discuss how it can be used to test PDEs’
integrability. First note that the scaling reductions (6.12) –(6.15) are actually group–invariant solutions
of the equation under the action of some particular Lie point symmetry. As an example, consider
the SG equation uxt(x, t) = sin[u(x, t)] and the symmetry [Olv993] (x, t) 7→ (x̃, t̃ ) ≡ (cx, c−1t) with
c 6= 0; the group invariant solutions are of the form u(x, t) = F (z) where z = xt is an invariant of the
symmetry. Similar arguments follow for the mKdV equation M[u] = 0, for which one may introduce
the Lie–point symmetry (u;x, t) 7→ (ũ; x̃, t̃ ) ≡ (cαu; cβx, cγt) with c 6= 0. The symmetry condition holds
if all the terms in the triple have equal weights, i.e. α − γ = 3α − β = α − 3β which yields β = −α,
γ = −3α and α arbitrary. The corresponding symmetry group, depending on the parameter cα, is
generated by V = v∂v − x∂x − 3t∂t and admits the invariants z = (3t)−1/3x and w = (3t)1/3v (having
introduced the constant factor 31/3 for convenience). Thus the group invariant solutions are of the form
v(x, t) = (3t)−1/3w(z) with z = (3t)−1/3x, which is the scaling reduction given in equation (6.14).
We can therefore introduce an integrability test for PDEs, known as Painlevé test, summarized with
the help of the following algorithm [Dun010]: given a PDE

℘1) find all the associated Lie–point symmetries;

℘2) construct exact reductions from the group invariant solutions;

℘3) check if all the non–trivial ODEs obtained satisfy the Painlevé property.

If all the reductions are of P–type then one may start looking for a BT or a scattering problem with
some confidence. Note that the Painlevé test just gives a necessary condition for integrability, which
means that if all the reductions of a given PDE are of P–type, then the PDE does not have to be
integrable in general. On the other hand, if an exact reduction is not of P–type, then one can be quite
confident (in the sense of the conjecture above) that the PDE under scrutiny is not IST–solvable in its
present form. In this case, a transformation may be available to make the not–P–type ODE of P–type;
if such a transformation exists, then the transformed PDE is a candidate for IST48.

48These transformations are often suggested by the details of the singular point analysis [AbS981].

59



7 Asymptotic perturbative methods and universality

In the previous sections we’ve discussed the structure of IST–solvable NLEEs. Now we wish to study
a different property of certain NLEEs, namely their universality. Recall that in §1.2 we said that,
out of the family of the so–called derivative NLEs (1.24), the NLS (1.23) plays an important role, since
it is possible to put a generic dispersive NLEE into the NLS form after an appropriate multiple scale
limit. We will refer hereafter to this property as the universality for the NLS equation. To discuss this
argument, we’ll need to introduce some basics of asymptotic analysis and perturbative methods; however,
we refer the interested reader to the monograph of A. Jeffrey & T. Kawahara entitled "Asymptotic
methods in Nonlinear wave theory", from which the above argumentations are taken.

7.1 Asymptotic series and perturbations. First recall some basic notions about the so–called Landau
notation. Let f = f(x) and g = g(x) be two functions defined on some open subset of R, with g(x) 6= 0
for values of x sufficiently close to zero: then f(x) ∈ o

(
g(x)

)
as x → 0 iff lim supx→0 |f(x)/g(x)| < ∞

and f(x) ∈ O
(
g(x)

)
iff limx→0 f(x)/g(x)→ 0. Thus we can introduce the following

Definition 7.1 - Consider the sequence of functions {ϕn(ε)}n∈N0 depending on the parameter ε; if

ϕn+1(ε) ∈ o
(
ϕn(ε)

)
as ε→ 0, ∀n ∈ N0, (7.1)

then {ϕn(ε)}n∈N0
is said to be an asymptotic sequence as ε→ 0.

A trivial example is the power sequence, i.e. ϕn(ε) = εn, and it’ll be used frequently in what follows.
Consider now a function f : I ⊂ R → R depending also on the parameter ε and assume that, as

ε→ 0, there exists a positive integer N s.t. f can be approximated on I by the sum

f(x; ε)
ε→0−−−→

N∑
n=0

ϕn(ε)fn(x) + o
(
ϕN (ε)

)
. (7.2)

Then, this expression is called an asymptotic approximation to N + 1 terms of f = f(x; ε) as ε → 0
with respect to the asymptotic sequence of functions {ϕn(ε)}n∈N0

.

Definition 7.2 - If equation (7.2) holds ∀N ∈ N0, then it’s an asymptotic expansion of f = f(x; ε)
as ε→ 0. In particular, if it (doesn’t) holds uniformly49 on I, it’s said to be (non)uniformly valid.

Note that convergent series expansions are asymptotic, but the converse is not true in general; asymp-
totic series are, in fact, usually divergent. Remark also that termwise differentiation and multiplication
of asymptotic expansions is not always possible; however, this is not a big deal in our case, since we’ll
work with asymptotic power sequences, i.e. with asymptotic expansions of the form

f(x, ε)
ε→0−−−→

N∑
n=0

εnfn(x) +O(εN+1), ∀x ∈ I. (7.3)

In this particular case it can be proved that the above operations are admitted [JeK982].

Remark 7.1 – Asymptotic expansions occur frequently in Physics, where problems contain often one or
more small parameters. For instance, consider a boundary–value problem depending on small parameter
ε. If the equations are friendly workable for ε = 0 (which is called the reduced problem), then a solution
f = f(x; ε) might be obtained by means of an asymptotic expansion like the one in (A.3), where the
first term f0 = f0(x) is the solution of the reduced problem. When the result of this perturbation
analysis approximates the solution of the original equation and it’s uniformly valid in the range of the
independent variable considered, then the approximation is called asymptotic.

49Recall that {fn : S ⊆ R→ R}n∈N converges uniformly to f : S → R if ∀ ε ∈ R+, ∃N ∈ N0 s.t. ∀x ∈ S and ∀n ≥ N
it is |fn(x)− f(x)| < ε.
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Definition 7.3 - The perturbation problem is said to be regular iff the asymptotic expansion (7.3)
converges uniformly on I as ε → 0 or singular iff f = f(x; ε) doesn’t have a uniform limit in some
regions of I; these regions in which regular perturbations break down are called regions of non–uniformity.

Remark that singular perturbation problems are very common in asymptotic analysis; indeed, it is true
to say that they are the role rather than the exception in the theory.

Typical examples of perturbation problems are classified as follows [Nay973]:

. sources of non–uniformity appear in relation to an infinite domain, e.g. secular terms50 of the
form xn cosx, xn sinx in nonlinear oscillations, which make fn(x)/fn−1(x) unbounded as x→∞;

. a small parameter multiplies the highest–order derivative terms in a differential equation;

. there is a change of type of a PDE;

. the presence of singularities that doesn’t manifest themselves in the exact solution but appear at
a given order in the perturbative expansion and intensify when going to higher orders.

In what follows we’ll deal only with secular–type problems and our main purpose will be to develop
some basic techniques which eliminate non–uniformities (or singularities) from the perturbation problem,
leading to uniformly valid approximate expressions. These perturbation techniques constitute what we
shall call as singular perturbation methods. In particular, we’ll use as a working laboratory the so–
called Duffing equation (a well–known nonlinear oscillation equation) to show how singular perturbation
techniques (i.e. the Poincaré and multiple–scale methods) do apply.

Before doing this, however, let’s illustrate the regular perturbation procedure; in order to do this,
assume ε to be a small real parameter and consider the following Cauchy problem

f ′′(t) + a(t)f ′(t) +
[
b(t) + εg(t)

]
f(t) = 0, f(0) = c0, f ′(t)|t=0 = c1. (7.4)

Following the so–called Poincaré approach, introduce the power–series expansion

f(t; ε) =
∑
n∈N0

εnfn(t), ∀ t ∈ I, (7.5)

where the fn’s are C1 functions to be determined. Inserting equation (7.5) in (7.4) and setting to zero
the coefficients belonging to the same powers of ε, we give rise to the infinite system of ODEs

f ′′0 (t) + a(t)f ′0(t) + b(t)f0(t) = 0,

f ′′1 (t) + a(t)f ′1(t) + b(t)f1(t) = −g(t)f0(t),

f ′′2 (t) + a(t)f ′2(t) + b(t)f2(t) = −g(t)f1(t),

...
f ′′n (t) + a(t)f ′n(t) + b(t)fn(t) = −g(t)fn−1(t),

...

f0(0) = c0, f ′0(t)|t=0 = c1,

fn(0) = 0 = f ′n(t)|t=0, ∀n ∈ N.
(7.6)

Note that the series (7.5) converges uniformly on I, thus allowing the termwise differentiation. The
system (7.6) can now be solved iteratively, until one arrives to the desired number of terms.

50The term "secular" dates back to the early days of celestial mechanics, when these problems first appeared.
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7.2 Singular perturbation methods: the Duffing equation. Now let’s discuss how secular singu-
larities arise in perturbative methods. Consider the following family of oscillation equation with a weak
nonlinearity F = F [f(t), f ′(t)], whose intensity is determined by the parameter ε ∈ R+

0 : ε� 1:

f ′′(t) + f(t) = εF [f(t), f ′(t)]. (7.7)

Assume also the frequency of the reduced problem (i.e. for ε = 0) to be normalized to one. A pedagogical
example is given by the choice F = −f3, corresponding to the so–called Duffing equation

f ′′(t) + f(t) = −εf3(t). (7.8)

Following the Poincaré procedure above, introduce the power–series expansion (7.5) into (7.8) and equate
the coefficients belonging to ε0, ε1 and ε2, in order to get the following system

O(ε0) : f ′′0 (t) + f0(t) = 0,

O(ε1) : f ′′1 (t) + f1(t) = −f3
0 (t),

O(ε2) : f ′′2 (t) + f2(t) = −3f2
0 (t)f1(t).

(7.9)

The equation for the reduced problem is the usual one for the linear oscillator, whose general solution
is given by f0(t) = a cos(t + φ), being51 ω = 1. Inserting f0 into the problem of order O(ε) leads to
f ′′1 (t) + f1(t) = −a3 cos3(t+ φ) = − 1

4a
3
[

cos
(
3(t+ φ)

)
+ 3 cos(t+ φ)

]
, whose general solution is52

f1(t) = b cos(t+ ψ)− 3
8a

3t sin(t+ φ) + 1
32a

3 cos
[
3(t+ φ)

]
,

having absorbed the term 1
32a

3 cos(t+ φ) into the characteristic solution. This quantity can in turn be
eventually included into the zeroth–order solution, when b and ψ should the be determined from the
initial conditions. The general perturbation solution up to orders higher than O(ε) is

f(t; ε) = a cos(t+ φ) + 1
8εa

3
[

1
4 cos

[
3(t+ φ)

]
− 3t sin(t+ φ)

]
+O(ε2). (7.10)

Therefore, it is evident from equation (7.10) that f1/f0 diverges as t → ∞, due to the emergence of
the secular term t sin(t + φ); also, if we proceed to a higher–order approximation, secular terms like
tm sin(t+ φ) or tm cos(t+ φ) will appear, thus intensifying the divergence of the expansion.

The usefulness of the Duffing equation lies in the fact that it can be solved exactly. Indeed, multiply-
ing equation (7.8) by f ′ and integrating once with respect to t, yields immediately f ′2 +f2 + 1

2εf
4 = 2E

with E an integration constant. We obtain the implicit solution

t =

ˆ
d f(

2E − f2 − 1
2εf

4
)1/2 f≡a sin θ

=======

ˆ
d θ[

1 + εa2
(
1− 1

2 cos2 θ
)]1/2 , a2 ≡ 1

ε

[
(1 + 4εE)1/2 − 1

]
.

51Note that a and φ are constants to be determined after an appropriate choice of the initial conditions. However in
this section we shall not impose any initial condition since we’re concerned with general properties of solutions.

52This differential equation can be solved in various ways (by means of e.g. the similarity technique or the Lagrange
method). Here we present an alternative powerful approach proposed by F. G. Tricomi (1897–1978). Introduce the
linear operator L : Cn(I)→ C0(I) and consider then the non–homogeneous n–th order linear ODE[

L y
]
(x) ≡

[
dn

d xn
+ a1(x) dn−1

d xn−1 + · · ·+ an−1(x) d
d x

+ an(x)
]

y(x) = g(x).

Let yc = yc(x) be its complementary solution (i.e. the solution of [L y](x) = 0); thus the general solution is [Tri961]

y(x) = yc(x) +

ˆ x
0
g(ξ)Y (x− ξ) d ξ, Y (x) :=

{
yc(0) = y ′c(x)|t=0 = y ′′c (x)|x=0 = · · · = y(n−2)

c (x)|x=0 = 0,

y(n−1)
c (x)|x=0 = 1.

Let’s apply this method to the case under scrutiny, i.e. f ′′1 + f1 = −a3 cos3 x with x ≡ t+ φ. The characteristic solution
is given by f1c(x) = c1e−ıx + c2eıx so that Y1(x) = 1

2ı
(eıx − e−ıx) = sinx and thus the particular solution is

f1p(x) =

ˆ x
0
a3 cos3 ξ sin(ξ − x) d ξ = 1

32
a3
(

cos 3x− 12x sinx− cosx
)
.
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The integral above is an elliptic one, thus f is periodic in t and the period of oscillation is given by

T = 4

ˆ π/2

0

d θ[
1 + εa2

(
1− 1

2 cos2 θ
)]1/2 = 4

ˆ a

0

d f(
2E − f2 − 1

2εf
4
)1/2 . (7.11)

Since εa2 is small, we can expand in Taylor series the function in (7.11), yielding

T = 4

ˆ π/2

0

[
1− 1

2εa
2(1− 1

2 cos2 θ) +O(ε2a4)
]

d θ = 2π
[
1− 3

8εa
2 +O(ε2a4)

]
. (7.12)

Therefore, defining with Ω = 2πT the angular frequency of the nonlinear oscillator, one has

Ω = 1 + 3
8εa

2 +O
(
ε2a4

)
.

The above approach suggests that, providing εa2 � 1, the period T is substantially independent of
the amplitude and therefore it seems reasonable to construct a perturbation solution in terms of periodic
functions, each with linearized angular frequency of 1. However, for large t, the phase–difference between
the exact phase Ωt and the one of the linearized oscillator, i.e. 1t, becomes very large even when Ω is
very close to unity. This is the reason why the perturbation expansion based on the periodic solution of
the reduced problem fails, giving rise to the secular term t sin(t+φ) in (7.10). One may therefore think
to construct a secular–free solution by means of a perturbation approach based on the exact period
(7.11) or on the improved one given by the equation (7.12). These observations point out the role
that independent coordinates have in the search for a uniform expansion; indeed, the secularity may be
eliminated by using an asymptotic expansion in terms of a new time–coordinate τ = τ(t; ε) so that

f(t; ε) =
∑
n∈N0

εnfn[τ(t; ε)], τ =
(
1 + 3

8εa
2
)
t+ φ. (7.13)

In terms of the scaled time–variable τ , the equation (A.10) can be written in the secular–free form

f(t; ε) = a cos τ + 1
32εa

3 cos 3τ +O(ε2), (7.14)

since cos τ = cos(t+φ+ 3
8εa

2t) = cos(t+φ)+ 3
8εa

2t sin(t+φ)+O(ε2) and cos 3τ = ε cos[3(t+φ)]+O(ε2),
begin 0 < εa2 � 1. The new coordinate τ = τ(t; ε) is thus called the optimal coordinate. This result
indicates that an appropriate transformation of independent variables is useful for rendering perturbation
expansions uniformly valid. The following two sections are devoted in the description of two basic
techniques, based on scaling transforms of the independent variables, that are often used in singular
perturbation theory, i.e. the Poincaré and the multiple–scale methods.

7.3 The Poincaré method. In this method the solution is expanded in the form of power series in ε
in order to remove perturbation’s secularities. Recalling that the angular frequency of the linearized
equation is normalized to unity, assume the following expansion

f(t; ε) =
∑
n∈N0

εnfn[τ(t; ε)], τ(t; ε) ≡ ω(ε)t, ω(ε) := 1 + εω1 + ε2ω2 + · · · . (7.15)

The dependence of τ on ε is thus determined by forcing the non–secularity conditions, i.e. by setting to
zero the coefficients belonging to the secular terms of the form tm cos t and tm sin t.

To show how this method works, insert the expressions (7.15) into (7.7) in order to obtain∑
n∈N0

εnf ′′n (τ)

( ∑
m∈N0

εmωm

)2

+
∑
n∈N0

εnfn(τ) = εF

[ ∑
n∈N0

εnfn(τ),
∑

n,m∈N0

εn+mωmf
′
n(τ)

]
,

with ω0 = 1. Equating the coefficients belonging to same powers of ε, one finds the system

O(ε0) : f ′′0 (τ) + f0(τ) = 0,

O(ε1) : f ′′1 (τ) + f1(τ) = −2ω1f
′′
0 (τ) + F

[
f0(τ), f ′0(τ)

]
.
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Inserting the general solution of the reduced problem f0 = a cos(τ+φ) into the 1st order equation yields

f ′′1 (τ) + f1(τ) = −2aω1 cos(θ) + F
[
a cos θ,−a sin θ

]
, (7.16)

being θ ≡ τ + φ. Therefore, if the r.h.s. contains terms proportional to cos θ or sin θ, then singularities
must occur and no periodic solutions exist. However, those singularities can now be eliminated by
choosing suitable values for a and ω1. To do so, let’s perform a Fourier series expansion of F so that

F
[
a cos θ,−a sin θ

]
=

A0

2
+
∑
n∈N

[
An(a) cosnθ + Bn(a) sinnθ

]
,

An(a) :=
1

π

ˆ 2π

0

F [a cos θ,−a sin θ] cosnθ d θ, Bn(a) :=
1

π

ˆ 2π

0

F [a cos θ,−a sin θ] sinnθ d θ.

Inserting the above expansion into (7.16), it follows that the secularities can be removed by forcing the
conditions 2ω1a + A1(a) = 0 and B1(a) = 0, which gives us the relations for ω1 and a. In fact, having
in mind that τ = ωt =

[
1− ε

2aA1(a) +O(ε2)
]
t, we obtain the lowest–order approximate solution

f(t; ε) = a cos
[(

1− ε
2aA1(a)

)
t+ φ

]
, (7.17)

which is correct up to O(ε). In the case of the Duffing equation, one has F [f, f ′] = −f3 so that
F [a cos θ,−a sin θ] = −a3 cos3 θ and the O(ε) equation (7.16) takes the explicit form

f ′′1 + f1 = − 1
4a

3 cos 3θ +
(

2ω1 − 3
4a

2
)
a cos θ. (7.18)

The non–secularity condition is ω1 = 3
8a

2 so that f ′′1 + f1 = − 1
4a

3 cos 3θ, whose particular solution is
f1p(θ) = 1

32a
3(cos 3θ − cos θ). Since the second term in the r.h.s. can be absorbed into the general

solution, we have f1p(θ) = 1
32a

3 cos 3θ and the perturbative solution valid up to O(ε2) terms is

f = a cos
(
ω(ε)t+ φ

)
+ 1

32εa
3 cos

[
3(ω(ε)t+ φ)

]
+O(ε2), ω(ε) = 1 + 3

8εa
2 +O(ε2). (7.19)

We have then reproduced our previous result given in equations (7.13) and (7.14). Note that the analysis
presented here can be straightforwardly extended to an arbitrary (but still finite) order O(εn), arriving
this way at a higher–order perturbative analysis of the solution.

7.4 Multiple–scale method. In the literature there is a variety of versions of the so–called multiple–
scale method; here we discuss a procedure known as the derivative expansion approach. First, let’s
expand the independent variable t to many variables, each with a different scale, by introducing the set
{tn ≡ εnt}n=0,1,...,N ; now expand the dependent variable f into an asymptotic series of the form

f(t; ε) =

N∑
n=0

εnfn(t0, t1, . . . , tN ) +O
(
εN+1

)
, (7.20)

having assumed that each function fn depends on the multiple–scales {tn}n=0,1,...,N . Note that

d

d t
=

N∑
n=0

εn
∂

∂tn
,

which is the reason why this approach has the name it has. Inserting (7.20) into (7.8), yields( N∑
m=0

εn∂tn

)2 N∑
n=0

εnfn(t0, t1, . . . , tN ) +

N∑
n=0

εnfn(t0, t1, . . . , tN ) = −ε
( N∑
n=0

εnfn(t0, t1, . . . , tN )

)3

.
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Equating to zero the coefficients belonging to the same powers of ε, gives the first two equations

O(ε0) : ∂2
t0f0 + f0 = 0,

O(ε1) : ∂2
t0f1 + f1 = −2∂t0∂t1f0 − f3

0 .
(7.21)

The general solution of the first equation is the usual one of the linear oscillator, namely

f0(t0, t1, . . . , tN ) = a(t1, t2, . . . , tN ) cos
[
t0 + Φ(t1, t2, . . . , tN )

]
, (7.22)

where a = a(t1, . . . , tN ) and Φ = Φ(t1, . . . , tN ) are functions that might depend on the "slow" variables
t1, t2, . . . , tN and have to be determined. Inserting (7.22) into the second equation in (7.21) gives

∂2
t0f1 + f1 = 2at1 sin(t0 + Φ) +

(
2aΦt1 − 3

4a
2
)
a cos(t0 + Φ)− 1

4a
3 cos

[
3(t0 + Φ)

]
,

and the non–secularity conditions for f1 become now ∂t1a = 0 and ∂t1Φ = 3
8a

2, that is

Φ(t1, t2, . . . , tN ) = 3
8 t1a(t2, . . . , tN ) + φ(t2, . . . , tN ), (7.23)

having noted that a = a(t2, . . . , tN ). Therefore, if we are interested into solutions that are valid up
to O(ε) orders, one can assume a and φ as constants. The secular–free equation is then ∂2

t0f1 + f1 =
− 1

4 cos 3θ with θ ≡ t0 + Φ, which means that the uniformly valid solution up to O(ε) is given by

f = a cos θ +
1

32
εa3 cos 3θ +O(ε2), θ ≡

(
1 + 3

8εa
2
)
t+ φ. (7.24)

Thus the same result obtained in (7.14) and (7.19) is again reproduced. Note that the main idea behind
this method is to extend the independent variable to many variables, including the slowly varying
ones; such an increase in the number of degrees of freedom is then used to make the perturbation
uniformly valid. Since this method is systematic, it is a straightforward matter to proceed to higher
order perturbations and this is why we’ll use it in the following applications in Nonlinear Theory.

7.5 Multiple–scale approach to NLEEs. The previous subsections were concerned with the study of
perturbative solutions of nonlinear oscillation problems and so they involved only NLODEs. It turns
out that the essential ideas we’ve presented are equally useful in the study of PDEs and, in particular,
of nonlinear dispersive evolution equations (NLDEEs). Indeed, some additional ideas will be needed
for such problems. The aim of this paragraph it to show, by means of the perturbative approach, the
emergence of a "universal" property of some NLEEs within the class of the NLDEEs. In particular, we’ll
see how the differential expansion method introduced in §7.4 leads to the NLS equation, in presence
of wave modulation of quasi–monochromatic waves [Kaw973], and to the KdV within the long–wave
approximation of the Boussinesq equation, which is a representative model for the family of NLDEEs.

Before entering the discussion, we’ll need to recall some properties of NLDEEs. Let’s therefore
consider a simple but paradigmatic model described by the so–called Boussinesq–type equation

utt − c2uxx − µuttxx = 1
2

(
u2
)
xx
, (7.25)

where c is the phase velocity in the limit of long–wavelength and µ is a dispersive coefficient.
We search for harmonic wave–type solutions of (7.25) having the form u(x, t) = Aeı(kx−ωt) + c.c.,

where k is the wave number, ω is the frequency, A is the complex–valued amplitude and c.c. denotes
the complex conjugate of the preceding term. The latter solves the linearized Boussinesq–type equation
utt − c2uxx − µuttxx = 0 iff the following dispersive relation holds:

D(k;ω) = c2k2 − ω2 − µk2ω2 ≡ 0, k ∈ R \ {0}. (7.26)

Remark 7.1 – Recall that, for an arbitrary linear dispersive equation, the relation D(k;ω) ≡ 0 may
have several roots for ω, when we may write ω = Wl(k) with l = 1, 2, . . . ,m, where the functions W so
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defined can be complex–valued functions of k. For real roots we’ll say that the relation ω = W (k) is
purely dispersive, where the term "dispersive" is used iff the condition W ′′(k) 6≡ 0 is satisfied. E.g., the
dispersive relation (7.26) for the linearized Boussinesq–type equation has two distinct roots

ω = ± ck

(1 + µk2)1/2
, k ∈ R \ {0},

so that it is purely dispersive, since W ′′(k) 6≡ 0 ∀ k ∈ R \ {0} and its roots are both real.

Recall that a solution of the linearized equation can be obtained by means of a superposition of
Fourier integrals, whose number is determined by the number of the roots of D(k;ω) ≡ 0. In particular,
for the linearized Boussinesq–type equation one has ω = ±W (k), with W (k) = ck(1 + µk2)−1/2 so that

u(x, t) =

ˆ
R
f1(k)e−ıχ1(k)t d k +

ˆ
R
f2(k)e−ıχ2(k)t d k, χ1,2(k) ≡ ±W (k)− kx

t
.

In what follows, we’ll be interested in the far field limit, i.e. |t| → +∞ with x/t kept fixed, representing
the case of progressive waves moving with fixed velocity x/t. Within this limit, the integral above can
be solved by means of the stationary phase method, thus obtaining the asymptotic behavior of linear
dispersive waves [JeK982].

7.5.1 Nonlinear wave modulation and the NLS equation. In order to apply the multiple–scale
method to the equation (7.25), let’s rewrite it in the following form

L (∂x, ∂t)[u(x, t)] = N (∂x, ∂t)
[
u2(x, t)

]
,

L (∂x, ∂t) ≡ ∂2
t − c2∂2

x − µ∂2
x∂

2
t ,

N (∂x, ∂t) ≡ 1
2∂

2
x.

(7.27)

In the derivative expansion method, the number of independent variables is extended to include also
slowly–varying variables. Applying the procedure to x and t, we introduce the set of multiple–scales{

(xn, tn) ≡ (εnx, εnt)
}
n=0,1,...,M

,

being ε a parameter characterizing the smallness of the associated terms. Accordingly, the dependent
variable must be a function of the new variables, that is u = u({xn}n=0,1,...,M , {tn}n=0,1,...,M ). Further-
more, we assume that the dependent variable has an asymptotic representation of the form53

u(x0, x1, . . . , xM ; t0, t1, . . . , tM ; ε) =

M∑
m=1

εmum(x0, x1, . . . , xM ; t0, t1, . . . , tM ) +O(εM+1). (7.28)

It’s clear that, after the multiple–scaling, the operators L and N transform simultaneously as

L (∂x, ∂t) =

M∑
n=0

εnLn

(
∂x0

, . . . , ∂xM ; ∂t0 , . . . , ∂tM
)

+O
(
εM+1

)
, (7.29a)

N (∂x, ∂t) =

M∑
n=0

εnNn

(
∂x0

, . . . , ∂xM ; ∂t0 , . . . , ∂tM
)

+O
(
εM+1

)
. (7.29b)

On the other hand we know that ∂x =
∑M
n=0 ε

n∂xn and ∂t =
∑M
n=0 ε

n∂tn so that, inserting the last

53In general u = u(x, t) can be expanded in terms of another small parameter which measures the weakness of the
nonlinearity of the wave; for the sake of simplicity, however, here we expand u as an asymptotic power series of ε.
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transformation into the original definitions of L and N given in (7.27), one finds

O(ε0) :

{
L0 = ∂2

t0 − c
2∂2
x0
− µ∂2

x0
∂2
t0 ,

N0 = 1
2∂

2
x0
,

O(ε1) :

{
L1 = 2∂t0∂t1 − 2c2∂x0

∂x1
− 2µ

(
∂x0

∂x1
∂2
t0 + ∂t0∂t1∂

2
x0

)
,

N1 = ∂x0
∂x1

,

O(ε2) :


L2 = ∂2

t1 + 2∂t0∂t2 − c2
(
∂2
x1

+ 2∂x0∂x2

)
+

− µ
(
∂2
t0∂

2
x1

+ ∂2
t1∂

2
x0

+ 4∂t0∂t1∂x0
∂x1

+ 2∂2
t0∂x0

∂x2
+ 2∂t0∂t2∂

2
x0

)
,

N2 = 1
2∂

2
x1

+ ∂x0
∂x2

,

Using the operators above, we obtain the first four perturbation equation in the following form

O(ε1) : L0[u1] = 0, (7.30a)

O(ε2) : L0[u2] + L1[u1] = N0[u2
1], (7.30b)

O(ε3) : L0[u3] + L1[u2] + L2[u1] = N0[2u1u2] + N1[u2
1], (7.30c)

O(ε4) : L0[u4] + L1[u3] + L2[u2] + L3[u1] = N0[u2
2 + 2u1u3] + N1[2u1u2] + N2[u2

1]. (7.30d)

Being interested in nonlinear wave modulation, assume that (7.30a) has a solution of the form

u1(x0, x1, . . . , xM ; t0, t1, . . . , tM ) = A (x1, . . . , xM ; t1, . . . , tM )eıθ + c.c., θ ≡ kx0 − ωt0. (7.31)

which is nothing more than the harmonic wave–type solution of the linearized Boussinesq–type equation
(7.25). Therefore, the wave number k and the frequency ω are not arbitrary, but must satisfy the
dispersion relation (7.26). Since we wish to insert the solution (7.31) into (7.30b), let’s first note that

L1[u1] = −ı
(
At1Dω −Ax1

Dk

)
eıθ + c.c., N0

[
u2

1

]
= −2k2A2e2ıθ + c.c.,

where we have used the following facts: Dω(k;ω) = −2ω(1 + µk2), Dk(k;ω) = 2k(c2 − µω2) and
u2

1 = A 2e2ıθ + A ∗2e−2ıθ + 2|A |2. Thus, the second–order perturbation equation (7.30b) becomes

L0[u2] = ı
(
At1Dω −Ax1Dk

)
eıθ − 2k2A 2e2ıθ + c.c.. (7.32)

Imposing now the non–secularity condition, i.e. the coefficient of eıθ vanishes, gives us the equation

At1Dω = Ax1
Dk ⇐⇒ At1

Ax1

=
Dk

Dω
= −vg, (7.33)

where vg is the group–velocity54 of the wave–train (7.31). If (7.33) and its complex conjugate are
satisfied, then (7.32) gets the form L0[u2] = −2k2A 2e2ıθ + c.c. and admits the uniformly valid solution

u2(x0, x1, . . . , xM ; t0, t1, . . . , tM ) = − 2k

D(2k; 2ω)
A 2(x1, . . . , xM ; t1, . . . , tM )e2ıθ+

+ E (x1, . . . , xM ; t1, . . . , tM )eıθ + c.c. + F (x1, . . . , xM ; t1, . . . , tM ),

(7.34)

where E and F are respectively complex–valued and real–valued functions of higher–order scaled to be
determined in higher–order perturbations55. Note that E can be absorbed into u1 by redefining A .

54Equation (7.33) follows immediately by differentiating both sides of equation (7.26) squared, that is

2ω dω = 2c2
(

k

1 + µk2
−

2µk3

(1 + µk2)2

)
d k =

2k(c2 − µω2)

1 + µk2
d k =⇒ vg :=

dω

d k
=
k(c2 − µω2)

ω(1 + µk2)
.

55Note that the solution (7.34) has been obtained by searching for a particular solution of the non–secular second–order
perturbative equation (7.32) of the form u2 = αe2ıθ + E eıθ + c.c. + F , where E is complex–valued and F real.
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To study the next–order equation, we need to insert the relations (7.34) and (7.31) into (7.30c).
With this aim, let’s calculate L1[u2], L2[u1], N0[2u1u2] and N1[u2

1]: after some calculation, one has

L1 [u2] =
ık2

D2

(
D2kAx1

−D2ωAt1

)
e2ıθ − ı

(
DkEx1

−DωEt1
)
eıθ + c.c.,

L2 [u1] = −1

2

(
DωωAt1t1 + DkkAx1x1 − 2DkωAt1x1

)
eıθ − ı

(
DkAx2 −DωAt2

)
eıθ + c.c.,

N0 [2u1u2] =
18k4

D2
A 3e3ıθ − 4k2A E e2ıθ − k2

(
A F − 2k2

D2
A 2A

)
eıθ + c.c.,

N1

[
u2

1

]
= 4ıkA Ax1

e2ıθ + c.c.,

where we have introduced the new function D2(k;ω) ≡ D(2k; 2ω) in order to simplify the notation and
noted that the product of the two functions u1 and u2 takes the form

u1u2 = −2k2

D2
A 3e3ıθ + A E e2ıθ +

(
A F − 2k2

D2
A 2A ∗

)
eıθ + A ∗E + c.c.,

in the third relation. The non–secularity condition is more involved than before and is given by

ı
(
DkAx2

−DωAt2

)
+ 1

2

(
DωωAt1t1 − 2DωkAt1x1 + DkkAx1x1

)
+

+ k2

(
2k2

D2
A 2A ∗ −A F

)
+ ı
(
DkEx1

−DωEt1
)

= 0,
(7.35)

and its complex conjugate relation. The function F can be determined by means of the non–secularity
condition for constant terms in the O(ε4) problem. The calculations show that the terms which con-
tribute are L2[u2] with (∂2

t1 − c
2∂2
x1

)F and N2[u2
1] with ∂2

x1
|A |2; therefore, F satisfies the equation(

∂2
t1 − c

2∂2
x1

)
F = ∂2

x1
|A |2. (7.36)

If we assume that A and F depend on x1, t1 only through ξ ≡ x1 − vgt1, i.e. if they are considered in
a coordinate system moving with vg, one can integrate twice (v2

g − c2)∂2
ξF = ∂2

ξ |A |2, so that

F (ξ, x2, . . . , xM ; t2, . . . , tM ) =
1

v2
g − c2

∣∣A ∣∣2(x1, . . . , xM ; t1, . . . , tM ) + β(x2, . . . , xM ; t2, . . . , tM ), (7.37)

where the term α(x2, . . . , xM ; t2, . . . , tM )ξ has been absorbed in the expression56 for F . Note that the
function β = β(x2, . . . , xM ; t2, . . . , tM ) is determined by choosing suitable boundary or initial conditions.

In order to obtain a closed expression for A , we need to determine E in equation (7.34). It can be
demonstrated that this quantity can be transferred to the lowest–order solution (7.31) and the transferred
quantity can then be regarded as a new expression for A , which still satisfies equation (7.34). Thus we
may drop the last term in (7.34) and we can rewrite it in the form

ıDω

(
At2 − vgAx2

)
− 1

2

(
Dkk + 2vgDkω + v2

gDωω

)
Aξξ +k2

[(
1

v2
g − c2

− 2k2

D2

)∣∣A ∣∣2A +βA

]
= 0. (7.38)

Equation (7.38) can be further simplified by means of the following observations:

d vg
d k

=
(c2 − µω2)− 2µkωvg

ω(1 + µk2)
− k(c2 − µω2)

ω2(1 + µk2)

[
vg(1 + µk2) + 2µkω

]
= − 1

Dω

(
Dkk + 2vgDωk + v2

gDωω

)
,

1

2k2
D2(ω; k) =

2

k2
(c2k2 − ω2 − µk2ω2)− 6µω2 = D(ω; k)− 6µω2 = −6µω2,

56When vg → c the resonant interaction between short waves and long waves becomes important and has to be treated
separately. We refer the interested reader to the monograph of A. Jeffrey & T. Kawahara [JeK982].
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having invoked the dispersive relation in the last identity. Thus, equation (7.38) becomes

ı
(
At2 − vgAx2

)
+

1

2
Aξξ

d vg
d k

+
k2

Dω

[(
1

v2
g − c2

+
1

6µω2

)∣∣A ∣∣2A + βA

]
= 0, (7.39)

where A = A (ξ, x2, . . . , xM ; t2, . . . , tM ) (since we have absorbed in it the term E ξ, otherwise present
in equation (7.37)). Note that if we’re interested in second order perturbations, we can neglect the de-
pendence of β = β(x2, . . . , xM ; t2, . . . , tM ) from slowly–varying variables and considerer it as a constant
within the approximation. Finally, introducing the scaling transforms

ξ ≡ 1

ε

(
x2 − vgt2

)
= x1 − vgt1 = ε(x− vgt), τ ≡ t2 = εt1 = ε2t,

we can write equation (7.39) in the standard form of the nonlinear Schrödinger equation

ıAτ +
1

2

d vg
d k

Aξξ +
k2

D2

[(
1

v2
g − c2

+
1

6µω2

)
|A |2 + β

]
A = 0, (7.40)

having used the transformations ∂x2
= 1

ε∂ξ and ∂t2 = −vgε ∂ξ + ∂τ .

Remark 7.2 – As mentioned in the note preceding formula (7.28), one can expand u in terms of another
small parameter δ measuring the strength of the nonlinearity, by assuming the asymptotic formula

u(x0, x1, . . . , xM ; t0, t1, . . . , tM ; ε, δ) =

N∑
n=1

δnun(x0, x1, . . . , xM ; t0, t1, . . . , tM ) +O(δN+1). (7.41)

Several cases may occur depending on the relative importance of the parameters δ and ε, i.e. between
the nonlinear and the dispersive properties of the wave. It is possible to show that [JeK982]:

� the case δ = ε corresponds to the one we’ve already studied;

� the case δ = ε2 describes a wave system dominated by dispersive interaction, thus characterized
by a linear propagation of the envelopes. Proceeding in an analogous way to the case δ = ε, we
obtain a linear equation that is like (7.39), but without the nonlinear term |A |2A ;

� the case δ = ε1/2 describes a wave system dominated by the nonlinear interaction. The non–
linearity appears already in the first non–secularity condition and the dispersive term is absent
(i.e. the coefficient d vg

d k = dω
d k ∝ W ′′(k) vanishes). In an analogous way, one obtains

ı
(
At1 + vgAx1

)
+
k2

Dω

(
1

6µω2
|A |2 + β

)
A = 0,

where A and β are functions of the slow scales x1, . . . , xM and t1, . . . , tM .

In summary, in this section we’ve shown how, starting from a paradigmatic model of a NLDEE
(the Boussinesq–type equation (7.25)), it’s possible to recover the NLS equation under an appropriate
multiple–scale limit. In this sense, one can somehow interpret the NLS as an "attractor" in the space
of all possible NLDEEs, thus explaining its, already mentioned, universal character.

7.5.2 Long–wave approximation and the KdV equation. Here we derive the KdV equation from the
multiple–scale approach to the Boussinesq–type equation (7.25) in the so–called long–wave approxima-
tion. First note that, within the Boussinesq wave–model, the limit of long waves implies that ω → 0 as
k → 0, owning to the dispersion relation (7.26). Therefore in the expansions (7.29) for the operators
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L and N , we can naturally remove both ∂x0 and ∂t0 , since they don’t contribute to the perturbative
equations (7.30). Thus L0 = L1 = N0 = N1 = 0 and the first few operators are reduced to

O(ε2) : L2 ≡ ∂2
t1 − c

2∂2
x1
, N2 ≡ 1

2∂
2
x1
, (7.42a)

O(ε3) : L3 ≡ ∂t1∂t2 − 2c2∂x1
∂x2

, N3 ≡ ∂x1
∂x2

, (7.42b)

O(ε4) : L4 ≡ ∂2
t2 + 2∂t1∂t3 − c2

(
∂2
x2

+ 2∂x1∂x3

)
− µ∂2

t1∂
2
x1
, (7.42c)

The dependent variable u is then expanded completely into the asymptotic series

u(x0, x1, . . . , xM ; t0, t1, . . . , tM ; ε, δ) =

N∑
n=1

δnun(x0, x1, . . . , xM ; t0, t1, . . . , tM ) +O(δN+1). (7.43)

We now have several cases, depending on the relative importance of the dispersion and nonlinearity
effects into the wave–problem under scrutiny. Let’s consider the case δ = ε2; we have

O(ε4) : L2[u1] = 0, (7.44a)

O(ε5) : L3[u1] = 0, (7.44b)

O(ε6) : L4[u1] + L2[u2] = N2[u2
1]. (7.44c)

Equation (7.44a) is a d’Alembert equation in the scaled variables (x1, t1), that is (∂2
t1 − c

2∂2
x1

)u1 = 0
and it is satisfied if u1 depends on x1 and t1 only thought ξ1 ≡ x1 − ct1 (equivalently, ξ1 ≡ x1 + ct1 for
waves propagating in the negative direction). Inserting what found into (7.44b), we obtain(

∂t2 + c∂x2

)
∂ξ1u1(ξ, x2, . . . , xM ; t2, . . . , tM ) = 0, (7.45)

having noted that ∂x1 = ∂ξ1 and ∂t1 = −c∂ξ1 . In turn, equation (7.45) is satisfied if u1 depends on
x2 and t2 through ξ2 ≡ x2 − ct2; accordingly, the operators N2 and L4 transforms as N2 = 1

2∂
2
ξ1

and
L4 = −c(2∂t3∂x1

+ 2c∂x3
∂ξ1 + µc∂4

ξ1
) respectively, and equation (7.44c) reduces to(

∂2
t1 − c

2∂2
x1

)
u2 − c

(
2∂t3 + 2c∂x3 + µc∂3

ξ1

)
∂ξ1u1 = ∂ξ1

(
u1∂ξ1u1

)
. (7.46)

Note that the term L2[u2] in (7.46) has not been transformed since we don’t know (in general) how u2

depends from the scaled variables x1, t1. If we further assume that also u2 depends on x1 and t1 only
through ξ1 = x1 − ct1, then the first term in equation (7.46) vanishes57 and we are left with

∂t3u1 + c∂x3
u1 + 1

2µc∂
3
ξ1u1 + 1

2cu1∂ξ1u1 = 0, (7.47)

where we have integrated once with respect to ξ1 and set to zero the integration constant. Finally,
transforming to a coordinate system moving with the phase velocity c of the long–wave, i.e. introducing
the new variables ξ3 ≡ x3 − ct3 and τ ≡ t3, and replacing ξ1 by ξ, we arrive to the equation

∂τu1 +
1

2c
u1∂ξu1 +

1

2
µc∂3

ξu1 = 0, (7.48)

which is the KdV equation for the function u1 with respect to the independent variables ξ and τ . Note
that, differently from the asymptotic expansion discussed in §7.5.2, here it turns necessary to move the
coordinate system with the phase velocity (and not with the group velocity) of the wave.

Remark 7.3 – Other expansions can be analyzed, e.g. it can be shown that the choice δ = ε3 leads to a
linear equation, whilst δ = ε leads to a nonlinear evolution equation with a dispersive term of the form

∂t2u1 + c∂x2u1 +
1

2c
u1∂ξu1 = 0,

where the independent variables are the lower–order scales x2 and t2. Applications to more general
systems can be found in the monograph of A. Jeffrey & T. Kawahara, Asymptotic methods in
Nonlinear Wave Theory, §3.5.3, pgg. 98–105 [JeK982] and in references quoted therein.

57Being "on–shell", that is the function u2 satisfies the d’Alembert equation (∂2t1 − c
2∂2x1 )u2 = 0.
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A Bäcklund transform for the second Painlevé equation

In §6.2 we’ve discussed the connections between IST–solvable NLEEs and the Painlevé transcendents.
Having in mind those properties, one may have an intuition about the reasons why the Painlevé transcen-
dents have many common features (Lax pairs and Hamiltonian formalism, see §6.1) with IST–solvable
NLEEs studies so far. Here we wish to use this connection to gain the BTs of the Painlevé transcendents
from the BTs of the corresponding NLEEs. For instance, we shall treat the case of the KdV equation
and its reduction towards PII given by the scaling (6.13).

With this aim, consider the so–called potential–KdV wt − 3w2
x + wxxx = 0 where wx(x, t) = u(x, t)

and K[u] = 0; assume then the scaling reduction [FoA982]

η ≡ x

(6t)1/3
, w(x, t) = − 1

(6t)1/3

[
1
2η

2 + 2ϕ(η)
]
,

where ϕ = ϕ(η) satisfies the similarity equation ϕηηη + 6ϕ2
η + 4ηϕη − 2ϕ = 0. Multiplying both sides by

2ϕηη, adding and subtracting 4ϕ2
η one can easily integrate the above equation to get

ϕ2
ηη + 4ϕ3

η + 4ηϕ2
η − 4ϕϕη = µ2, (A.1)

with µ2 an integration constant. Now multiply the similarity equation by 2ϕη and subtract it from
(A.1), in order to obtain the equation

2ϕηϕηηη + 8ϕ3
η + 4ηϕ2

η − ϕ2
ηη + µ2 = 0,

which corresponds, after a proper transformation of η and ϕη, to one of the fifty 2nd order ODEs
classified by Painlevé & Gambier. Its general solution is therefore given by

ϕη(η;µ2) = −2−1/3
[
Vz(z;µ) + V 2(z;µ) + 1

2 z
]
, z ≡ 21/3η (A.2)

where V = V (z;µ) satisfies PII, i.e. Vzz(z; η) = 2V 3(z; η) + zV (z; η) + µ − 1/2. Having in mind this
equation, we find 2ϕηV = −2−1/3

(
2VVz + 2V 3 + zV

)
= −2−1/3(2VVz + Vzz − µ + 1/2); on the other

hand, the equation (A.2) yields ϕηη = −
(

Vzz − 2VVz + 1/2
)
, so that

V (z;µ) = 2−1/3ϕηη(η;µ2) + µ

2ϕη(η;µ2)
, (A.3)

which can be inverted in order to express ϕ = ϕ(η;µ2) in terms of V = V (z;µ), thus giving

ϕ(η;µ2) =
1

22/3

{
V 2

z (z;µ)−
[
V 2(z;µ) + 1

2 z
]2 − 2µV (z;µ)

}
, (A.4)

as it can be easily verified58. Inserting equation (A.4) into equation (A.1) and turning back to the original
KdV equation, we finally obtain the general similarity KdV–solution, given by the scaling reduction

z ≡ x

(3t)1/3
, u(x, t) =

1

(3t)2/3

[
Vz(z;µ) + V 2(z;µ)

]
. (A.5)

We derive now an expression for the PII–aBTs by starting from the KdV’s ones. Recall therefore the
equations (4.13) and (4.14): having assumed similarity solutions (which are not invariant under Galilei’s
transformations), we have to conveniently replace them with the following ones{

w̃x + wx = 1
2 (w̃ − w)2,

w̃t + wt = 2w2
x + wx

(
w̃ − w

)2
+ 2wxx

(
w̃ − w

)
.

(A.6)

58One has ϕη = (2)−1/3
[
2Vz Vzz − 2

(
V 2 + 1

2
z
)(

2VVz + 1
2

)
− 2µVz

]
= −2−1/3(V 2 + Vz + 1

2
), as in the equation (A.2).
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Let’s rewrite the equations (A.6) in terms of ϕ = ϕ(η;µ2). In order to do this, note that

w̃x + wx = −2(6t)−2/3(ϕ̃η + ϕη + η),

w̃t + wx = 2(6t)−4/3
[
3η2 + 2(ϕ̃+ ϕ)− 2η2 − 2η(ϕ̃− ϕ)2

]
,

2w2
x + wx(w̃ − w)2 + 2wxx(w̃ − w) = 2(6t)−2/3

[
η2 + 4ϕ2

η + 4ηϕη+

− 2(η + 2ϕη)(ϕ̃− ϕ)2 + 2(1 + 2ϕηη)(ϕ̃− ϕ)
]
.

Inserting these expressions into the equations (A.6), we finally obtain{
ϕ̃η = −η − ϕη − (ϕ̃− ϕ)2,

ϕ = ϕ2
η + ηϕη − ϕη(ϕ̃− ϕ)2 + ϕηη(ϕ̃− ϕ).

(A.7)

Note that if ϕ = 0 in (A.7), then we’re left just with the first expression; otherwise, if ϕ 6= 0 then the
second equation is algebraic of the 2nd order in (ϕ̃− ϕ) and admits the solution

ϕ̃(η; µ̃2) = ϕ(η;µ2) +
ϕηη(η;µ2)± µ

2ϕη(η;µ2)
,

having used equation (A.1); note that in (A.1) the integration constant appears as µ2, thus we can
ignore the minus sign in the above expression and absorb the ± as an indetermination for sgn(µ). Also,
observe that inserting the expression for ϕ̃ into the analogous one for ϕ, one finds µ̃2 = (1− µ)2 which
implies ϕ̃(η; µ̃2) = ϕ(η; (1− µ)2). Therefore, recalling the relation (A.3) for V = V (z;µ), we obtain an
expression for the aBT of the exact KdV–reduction associated to the scaling transforms (A.5), namely

ϕ
(
η; (1− µ)2

)
= ϕ(η;µ2) + 21/3V (z;µ). (A.8)

Therefore the effect of two successive aBTs of the form (A.8) is

ϕ
(
η; (2− µ)2

)
= ϕ̃(η; µ̃2) +

ϕ̃ηη(η; µ̃2) + µ̃

2ϕ̃η(η; µ̃2)
= ϕ(η;µ2) + 21/3

[
V (z;µ) + V (z;µ− 1)

]
, (A.9)

having noted that the choice µ̃ = 1− µ returns the original solution, since

˜̃µ 2 =
(
1− µ̃

)2
=

{
µ2 if µ̃ = 1− µ,
(2− µ)2 if µ̃ = µ− 1.

The generalization of the equation (A.9) to an arbitrary number n of aBTs follows immediately

ϕ
(
η; (n− µ)2

)
= ϕ

(
η;µ2

)
+ 2

1/3
n−1∑
k=0

V
(

z;µ− k
)
. (A.10)

The above structure reflects itself quite simply onto the solution V = V (z;µ) of the second Painlevé
transcendent. In fact, from the equation (A.3) it follows that

V (z;−µ) = V (z;µ) +
µ

Vz(z;µ) + V 2(z;µ) + 1
2 z
,

and, recalling that for µ̃ = 1− µ we get back the original solution, one finally finds

V (z;µ) + V (z; 1− µ) = 0. (A.11)
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